亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Tracking Cartesian motion with end~effectors is a fundamental task in robot control. For motion that is not known in advance, the solvers must find fast solutions to the inverse kinematics (IK) problem for discretely sampled target poses. On joint control level, however, the robot's actuators operate in a continuous domain, requiring smooth transitions between individual states. In this work, we present a boost to the well-known Jacobian transpose method to address this goal, using the mass matrix of a virtually conditioned twin of the manipulator. Results on the UR10 show superior convergence and quality of our dynamics-based solver against the plain Jacobian method. Our algorithm is straightforward to implement as a controller, using common robotics libraries.

相關內容

Visual-inertial odometry (VIO) is the most common approach for estimating the state of autonomous micro aerial vehicles using only onboard sensors. Existing methods improve VIO performance by including a dynamics model in the estimation pipeline. However, such methods degrade in the presence of low-fidelity vehicle models and continuous external disturbances, such as wind. Our proposed method, HDVIO, overcomes these limitations by using a hybrid dynamics model that combines a point-mass vehicle model with a learning-based component that captures complex aerodynamic effects. HDVIO estimates the external force and the full robot state by leveraging the discrepancy between the actual motion and the predicted motion of the hybrid dynamics model. Our hybrid dynamics model uses a history of thrust and IMU measurements to predict the vehicle dynamics. To demonstrate the performance of our method, we present results on both public and novel drone dynamics datasets and show real-world experiments of a quadrotor flying in strong winds up to 25 km/h. The results show that our approach improves the motion and external force estimation compared to the state-of-the-art by up to 33% and 40%, respectively. Furthermore, differently from existing methods, we show that it is possible to predict the vehicle dynamics accurately while having no explicit knowledge of its full state.

Controlling complex tasks in robotic systems, such as circular motion for cleaning or following curvy lines, can be dealt with using nonlinear vector fields. In this paper, we introduce a novel approach called rotational obstacle avoidance method (ROAM) for adapting the initial dynamics when the workspace is partially occluded by obstacles. ROAM presents a closed-form solution that effectively avoids star-shaped obstacles in spaces of arbitrary dimensions by rotating the initial dynamics towards the tangent space. The algorithm enables navigation within obstacle hulls and can be customized to actively move away from surfaces, while guaranteeing the presence of only a single saddle point on the boundary of each obstacle. We introduce a sequence of mappings to extend the approach for general nonlinear dynamics. Moreover, ROAM extends its capabilities to handle multi-obstacle environments and provides the ability to constrain dynamics within a safe tube. By utilizing weighted vector-tree summation, we successfully navigate around general concave obstacles represented as a tree-of-stars. Through experimental evaluation, ROAM demonstrates superior performance in terms of minimizing occurrences of local minima and maintaining similarity to the initial dynamics, outperforming existing approaches in multi-obstacle simulations. The proposed method is highly reactive, owing to its simplicity, and can be applied effectively in dynamic environments. This was demonstrated during the collision-free navigation of a 7 degree-of-freedom robot arm around dynamic obstacles

Reinforcement Learning (RL) has made promising progress in planning and decision-making for Autonomous Vehicles (AVs) in simple driving scenarios. However, existing RL algorithms for AVs fail to learn critical driving skills in complex urban scenarios. First, urban driving scenarios require AVs to handle multiple driving tasks of which conventional RL algorithms are incapable. Second, the presence of other vehicles in urban scenarios results in a dynamically changing environment, which challenges RL algorithms to plan the action and trajectory of the AV. In this work, we propose an action and trajectory planner using Hierarchical Reinforcement Learning (atHRL) method, which models the agent behavior in a hierarchical model by using the perception of the lidar and birdeye view. The proposed atHRL method learns to make decisions about the agent's future trajectory and computes target waypoints under continuous settings based on a hierarchical DDPG algorithm. The waypoints planned by the atHRL model are then sent to a low-level controller to generate the steering and throttle commands required for the vehicle maneuver. We empirically verify the efficacy of atHRL through extensive experiments in complex urban driving scenarios that compose multiple tasks with the presence of other vehicles in the CARLA simulator. The experimental results suggest a significant performance improvement compared to the state-of-the-art RL methods.

Recent advances in high-fidelity simulators have enabled closed-loop training of autonomous driving agents, potentially solving the distribution shift in training v.s. deployment and allowing training to be scaled both safely and cheaply. However, there is a lack of understanding of how to build effective training benchmarks for closed-loop training. In this work, we present the first empirical study which analyzes the effects of different training benchmark designs on the success of learning agents, such as how to design traffic scenarios and scale training environments. Furthermore, we show that many popular RL algorithms cannot achieve satisfactory performance in the context of autonomous driving, as they lack long-term planning and take an extremely long time to train. To address these issues, we propose trajectory value learning (TRAVL), an RL-based driving agent that performs planning with multistep look-ahead and exploits cheaply generated imagined data for efficient learning. Our experiments show that TRAVL can learn much faster and produce safer maneuvers compared to all the baselines. For more information, visit the project website: //waabi.ai/research/travl

Text-to-image generation models represent the next step of evolution in image synthesis, offering a natural way to achieve flexible yet fine-grained control over the result. One emerging area of research is the fast adaptation of large text-to-image models to smaller datasets or new visual concepts. However, many efficient methods of adaptation have a long training time, which limits their practical applications, slows down research experiments, and spends excessive GPU resources. In this work, we study the training dynamics of popular text-to-image personalization methods (such as Textual Inversion or DreamBooth), aiming to speed them up. We observe that most concepts are learned at early stages and do not improve in quality later, but standard model convergence metrics fail to indicate that. Instead, we propose a simple drop-in early stopping criterion that only requires computing the regular training objective on a fixed set of inputs for all training iterations. Our experiments on Stable Diffusion for a range of concepts and for three personalization methods demonstrate the competitive performance of our approach, making adaptation up to 8 times faster with no significant drops in quality.

State estimation of robotic systems is essential to implementing feedback controllers which usually provide better robustness to modeling uncertainties than open-loop controllers. However, state estimation of soft robots is very challenging because soft robots have theoretically infinite degrees of freedom while existing sensors only provide a limited number of discrete measurements. In this paper, we design an observer for soft continuum robotic arms based on the well-known Cosserat rod theory which models continuum robotic arms by nonlinear partial differential equations (PDEs). The observer is able to estimate all the continuum (infinite-dimensional) robot states (poses, strains, and velocities) by only sensing the tip velocity of the continuum robot (and hence it is called a ``boundary'' observer). More importantly, the estimation error dynamics is formally proven to be locally input-to-state stable. The key idea is to inject sequential tip velocity measurements into the observer in a way that dissipates the energy of the estimation errors through the boundary. Furthermore, this boundary observer can be implemented by simply changing a boundary condition in any numerical solvers of Cosserat rod models. Extensive numerical studies are included and suggest that the domain of attraction is large and the observer is robust to uncertainties of tip velocity measurements and model parameters.

Trajectory optimization methods have achieved an exceptional level of performance on real-world robots in recent years. These methods heavily rely on accurate analytical models of the dynamics, yet some aspects of the physical world can only be captured to a limited extent. An alternative approach is to leverage machine learning techniques to learn a differentiable dynamics model of the system from data. In this work, we use trajectory optimization and model learning for performing highly dynamic and complex tasks with robotic systems in absence of accurate analytical models of the dynamics. We show that a neural network can model highly nonlinear behaviors accurately for large time horizons, from data collected in only 25 minutes of interactions on two distinct robots: (i) the Boston Dynamics Spot and an (ii) RC car. Furthermore, we use the gradients of the neural network to perform gradient-based trajectory optimization. In our hardware experiments, we demonstrate that our learned model can represent complex dynamics for both the Spot and Radio-controlled (RC) car, and gives good performance in combination with trajectory optimization methods.

In reinforcement learning (RL), sparse rewards can present a significant challenge. Fortunately, expert actions can be utilized to overcome this issue. However, acquiring explicit expert actions can be costly, and expert observations are often more readily available. This paper presents a new approach that uses expert observations for learning in robot manipulation tasks with sparse rewards from pixel observations. In particular, our technique involves using expert observations as intermediate visual goals for a goal-conditioned RL agent, enabling it to complete a task by successively reaching a series of goals. We demonstrate the efficacy of our method in five challenging block construction tasks in simulation and show that when combined with two state-of-the-art agents, our approach can significantly improve their performance while requiring 4-20 times fewer expert actions during training. Moreover, our method is also superior to a hierarchical baseline.

The small size, high dexterity, and intrinsic compliance of continuum robots (CRs) make them well suited for constrained environments. Solving the inverse kinematics (IK), that is finding robot joint configurations that satisfy desired position or pose queries, is a fundamental challenge in motion planning, control, and calibration for any robot structure. For CRs, the need to avoid obstacles in tightly confined workspaces greatly complicates the search for feasible IK solutions. Without an accurate initialization or multiple re-starts, existing algorithms often fail to find a solution. We present CIDGIKc (Convex Iteration for Distance-Geometric Inverse Kinematics for Continuum Robots), an algorithm that solves these nonconvex feasibility problems with a sequence of semidefinite programs whose objectives are designed to encourage low-rank minimizers. CIDGIKc is enabled by a novel distance-geometric parameterization of constant curvature segment geometry for CRs with extensible segments. The resulting IK formulation involves only quadratic expressions and can efficiently incorporate a large number of collision avoidance constraints. Our experimental results demonstrate >98% solve success rates within complex, highly cluttered environments which existing algorithms cannot account for.

We propose to use L\'evy {\alpha}-stable distributions for constructing priors for Bayesian inverse problems. The construction is based on Markov fields with stable-distributed increments. Special cases include the Cauchy and Gaussian distributions, with stability indices {\alpha} = 1, and {\alpha} = 2, respectively. Our target is to show that these priors provide a rich class of priors for modelling rough features. The main technical issue is that the {\alpha}-stable probability density functions do not have closed-form expressions in general, and this limits their applicability. For practical purposes, we need to approximate probability density functions through numerical integration or series expansions. Current available approximation methods are either too time-consuming or do not function within the range of stability and radius arguments needed in Bayesian inversion. To address the issue, we propose a new hybrid approximation method for symmetric univariate and bivariate {\alpha}-stable distributions, which is both fast to evaluate, and accurate enough from a practical viewpoint. Then we use approximation method in the numerical implementation of {\alpha}-stable random field priors. We demonstrate the applicability of the constructed priors on selected Bayesian inverse problems which include the deconvolution problem, and the inversion of a function governed by an elliptic partial differential equation. We also demonstrate hierarchical {\alpha}-stable priors in the one-dimensional deconvolution problem. We employ maximum-a-posterior-based estimation at all the numerical examples. To that end, we exploit the limited-memory BFGS and its bounded variant for the estimator.

北京阿比特科技有限公司