亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

When using boundary integral equation methods, we represent solutions of a linear partial differential equation as layer potentials. It is well-known that the approximation of layer potentials using quadrature rules suffer from poor resolution when evaluated closed to (but not on) the boundary. To address this challenge, we provide modified representations of the problem's solution. Similar to Gauss's law used to modify Laplace's double-layer potential, we use modified representations of Laplace's single-layer potential and Helmholtz layer potentials that avoid the close evaluation problem. Some techniques have been developed in the context of the representation formula or using interpolation techniques. We provide alternative modified representations of the layer potentials directly (or when only one density is at stake). Several numerical examples illustrate the efficiency of the technique in two and three dimensions.

相關內容

Current out-of-distribution detection approaches usually present special requirements (e.g., collecting outlier data and hyperparameter validation) and produce side effects (e.g., classification accuracy drop and slow/inefficient inferences). Recently, entropic out-of-distribution detection has been proposed as a seamless approach (i.e., a solution that avoids all previously mentioned drawbacks). The entropic out-of-distribution detection solution uses the IsoMax loss for training and the entropic score for out-of-distribution detection. The IsoMax loss works as a drop-in replacement of the SoftMax loss (i.e., the combination of the output linear layer, the SoftMax activation, and the cross-entropy loss) because swapping the SoftMax loss with the IsoMax loss requires no changes in the model's architecture or training procedures/hyperparameters. In this paper, we perform what we call an isometrization of the distances used in the IsoMax loss. Additionally, we propose replacing the entropic score with the minimum distance score. Experiments showed that these modifications significantly increase out-of-distribution detection performance while keeping the solution seamless. Besides being competitive with or outperforming all major current approaches, the proposed solution avoids all their current limitations in addition to being much easier to use because only a simple loss replacement for training the neural network is required. The code to replace the SoftMax loss with the IsoMax+ loss and reproduce the results is available at //github.com/dlmacedo/entropic-out-of-distribution-detection.

Approximating the graph diameter is a basic task of both theoretical and practical interest. A simple folklore algorithm can output a 2-approximation to the diameter in linear time by running BFS from an arbitrary vertex. It has been open whether a better approximation is possible in near-linear time. A series of papers on fine-grained complexity have led to strong hardness results for diameter in directed graphs, culminating in a recent tradeoff curve independently discovered by [Li, STOC'21] and [Dalirrooyfard and Wein, STOC'21], showing that under the Strong Exponential Time Hypothesis (SETH), for any integer $k\ge 2$ and $\delta>0$, a $2-\frac{1}{k}-\delta$ approximation for diameter in directed $m$-edge graphs requires $mn^{1+1/(k-1)-o(1)}$ time. In particular, the simple linear time $2$-approximation algorithm is optimal for directed graphs. In this paper we prove that the same tradeoff lower bound curve is possible for undirected graphs as well, extending results of [Roditty and Vassilevska W., STOC'13], [Li'20] and [Bonnet, ICALP'21] who proved the first few cases of the curve, $k=2,3$ and $4$, respectively. Our result shows in particular that the simple linear time $2$-approximation algorithm is also optimal for undirected graphs. To obtain our result we develop new tools for fine-grained reductions that could be useful for proving SETH-based hardness for other problems in undirected graphs related to distance computation.

Learning representations for pixel-based control has garnered significant attention recently in reinforcement learning. A wide range of methods have been proposed to enable efficient learning, leading to sample complexities similar to those in the full state setting. However, moving beyond carefully curated pixel data sets (centered crop, appropriate lighting, clear background, etc.) remains challenging. In this paper, we adopt a more difficult setting, incorporating background distractors, as a first step towards addressing this challenge. We present a simple baseline approach that can learn meaningful representations with no metric-based learning, no data augmentations, no world-model learning, and no contrastive learning. We then analyze when and why previously proposed methods are likely to fail or reduce to the same performance as the baseline in this harder setting and why we should think carefully about extending such methods beyond the well curated environments. Our results show that finer categorization of benchmarks on the basis of characteristics like density of reward, planning horizon of the problem, presence of task-irrelevant components, etc., is crucial in evaluating algorithms. Based on these observations, we propose different metrics to consider when evaluating an algorithm on benchmark tasks. We hope such a data-centric view can motivate researchers to rethink representation learning when investigating how to best apply RL to real-world tasks.

We study a new family of inverse problems for recovering representations of corrupted data. We assume access to a pre-trained representation learning network R(x) that operates on clean images, like CLIP. The problem is to recover the representation of an image R(x), if we are only given a corrupted version A(x), for some known forward operator A. We propose a supervised inversion method that uses a contrastive objective to obtain excellent representations for highly corrupted images. Using a linear probe on our robust representations, we achieve a higher accuracy than end-to-end supervised baselines when classifying images with various types of distortions, including blurring, additive noise, and random pixel masking. We evaluate on a subset of ImageNet and observe that our method is robust to varying levels of distortion. Our method outperforms end-to-end baselines even with a fraction of the labeled data in a wide range of forward operators.

Recently, Mutual Information (MI) has attracted attention in bounding the generalization error of Deep Neural Networks (DNNs). However, it is intractable to accurately estimate the MI in DNNs, thus most previous works have to relax the MI bound, which in turn weakens the information theoretic explanation for generalization. To address the limitation, this paper introduces a probabilistic representation of DNNs for accurately estimating the MI. Leveraging the proposed MI estimator, we validate the information theoretic explanation for generalization, and derive a tighter generalization bound than the state-of-the-art relaxations.

Evaluating the quality of learned representations without relying on a downstream task remains one of the challenges in representation learning. In this work, we present Geometric Component Analysis (GeomCA) algorithm that evaluates representation spaces based on their geometric and topological properties. GeomCA can be applied to representations of any dimension, independently of the model that generated them. We demonstrate its applicability by analyzing representations obtained from a variety of scenarios, such as contrastive learning models, generative models and supervised learning models.

The combination of visual and textual representations has produced excellent results in tasks such as image captioning and visual question answering, but the inference capabilities of multimodal representations are largely untested. In the case of textual representations, inference tasks such as Textual Entailment and Semantic Textual Similarity have been often used to benchmark the quality of textual representations. The long term goal of our research is to devise multimodal representation techniques that improve current inference capabilities. We thus present a novel task, Visual Semantic Textual Similarity (vSTS), where such inference ability can be tested directly. Given two items comprised each by an image and its accompanying caption, vSTS systems need to assess the degree to which the captions in context are semantically equivalent to each other. Our experiments using simple multimodal representations show that the addition of image representations produces better inference, compared to text-only representations. The improvement is observed both when directly computing the similarity between the representations of the two items, and when learning a siamese network based on vSTS training data. Our work shows, for the first time, the successful contribution of visual information to textual inference, with ample room for benchmarking more complex multimodal representation options.

Pre-trained language model representations have been successful in a wide range of language understanding tasks. In this paper, we examine different strategies to integrate pre-trained representations into sequence to sequence models and apply it to neural machine translation and abstractive summarization. We find that pre-trained representations are most effective when added to the encoder network which slows inference by only 14%. Our experiments in machine translation show gains of up to 5.3 BLEU in a simulated resource-poor setup. While returns diminish with more labeled data, we still observe improvements when millions of sentence-pairs are available. Finally, on abstractive summarization we achieve a new state of the art on the full text version of CNN/DailyMail.

Deep reinforcement learning (RL) algorithms have shown an impressive ability to learn complex control policies in high-dimensional environments. However, despite the ever-increasing performance on popular benchmarks such as the Arcade Learning Environment (ALE), policies learned by deep RL algorithms often struggle to generalize when evaluated in remarkably similar environments. In this paper, we assess the generalization capabilities of DQN, one of the most traditional deep RL algorithms in the field. We provide evidence suggesting that DQN overspecializes to the training environment. We comprehensively evaluate the impact of traditional regularization methods, $\ell_2$-regularization and dropout, and of reusing the learned representations to improve the generalization capabilities of DQN. We perform this study using different game modes of Atari 2600 games, a recently introduced modification for the ALE which supports slight variations of the Atari 2600 games traditionally used for benchmarking. Despite regularization being largely underutilized in deep RL, we show that it can, in fact, help DQN learn more general features. These features can then be reused and fine-tuned on similar tasks, considerably improving the sample efficiency of DQN.

In this paper, a novel video classification methodology is presented that aims to recognize different categories of third-person videos efficiently. The idea is to keep track of motion in videos by following optical flow elements over time. To classify the resulted motion time series efficiently, the idea is letting the machine to learn temporal features along the time dimension. This is done by training a multi-channel one dimensional Convolutional Neural Network (1D-CNN). Since CNNs represent the input data hierarchically, high level features are obtained by further processing of features in lower level layers. As a result, in the case of time series, long-term temporal features are extracted from short-term ones. Besides, the superiority of the proposed method over most of the deep-learning based approaches is that we only try to learn representative temporal features along the time dimension. This reduces the number of learning parameters significantly which results in trainability of our method on even smaller datasets. It is illustrated that the proposed method could reach state-of-the-art results on two public datasets UCF11 and jHMDB with the aid of a more efficient feature vector representation.

北京阿比特科技有限公司