The emergence of virtual avatars provides innovative opportunities for remote conferencing, education, and more. Our study investigates how the realism of avatars, used by native English speakers, impacts the anxiety levels of English as a Second Language (ESL) speakers during interactions. ESL participants engaged in conversations with native English speakers represented through cartoonish avatars, realistic-like avatars, or actual video streams. We measured both the ESL speakers' self-reported anxiety and their physiological indicators of anxiety. Our findings show that interactions with native speakers using cartoonish avatars or direct video lead to reduced anxiety levels among ESL participants. However, interactions with avatars that closely resemble humans heightened these anxieties. These insights are critically important for the design and application of virtual avatars, especially in addressing cross-cultural communication barriers and enhancing user experience.
The rise in additive manufacturing comes with unique opportunities and challenges. Rapid changes to part design and massive part customization distinctive to 3D-Print (3DP) can be easily achieved. Customized parts that are unique, yet exhibit similar features such as dental moulds, shoe insoles, or engine vanes could be industrially manufactured with 3DP. However, the opportunity for massive part customization comes with unique challenges for the existing production paradigm of robotics applications, as the current robotics paradigm for part identification and pose refinement is repetitive, where data-driven and object-dependent approaches are often used. Thus, a bottleneck exists in robotics applications for 3DP parts where massive customization is involved, as it is difficult for feature-based deep learning approaches to distinguish between similar parts such as shoe insoles belonging to different people. As such, we propose a method that augments patterns on 3DP parts so that grasping, part identification, and pose refinement can be executed in one shot with a tactile gripper. We also experimentally evaluate our approach from three perspectives, including real insertion tasks that mimic robotic sorting and packing, and achieved excellent classification results, a high insertion success rate of 95%, and a sub-millimeter pose refinement accuracy.
Why do deep neural networks (DNNs) benefit from very high dimensional parameter spaces? Their huge parameter complexities vs. stunning performances in practice is all the more intriguing and not explainable using the standard theory of regular models. In this work, we propose a geometrically flavored information-theoretic approach to study this phenomenon. Namely, we introduce the locally varying dimensionality of the parameter space of neural network models by considering the number of significant dimensions of the Fisher information matrix, and model the parameter space as a manifold using the framework of singular semi-Riemannian geometry. We derive model complexity measures which yield short description lengths for deep neural network models based on their singularity analysis thus explaining the good performance of DNNs despite their large number of parameters.
Methodologies for development of complex systems and models include external reviews by domain and technology experts. Among others, such reviews can uncover undocumented built-in assumptions that may be critical for correct and safe operation or constrain applicability. Since such assumptions may still escape human-centered processes like reviews, agile development, and risk analyses, here, we contribute toward making this process more methodical and automatable. We first present a blueprint for a taxonomy and formalization of the problem. We then show that a variety of digital artifacts of the system or model can be automatically checked against extensive reference knowledge. Since mimicking the breadth and depth of knowledge and skills of experts may appear unattainable, we illustrate the basic feasibility of automation with rudimentary experiments using OpenAI's ChatGPT. We believe that systematic handling of this aspect of system engineering can contribute significantly to the quality and safety of complex systems and models, and to the efficiency of development projects. We dedicate this work to Werner Damm, whose contributions to modeling and model-based development, in industry and academia, with a special focus on safety, helped establish a solid foundation to our discipline and to the work of many scientists and professionals, including, naturally, the approaches and techniques described here.
We use high resolution data to investigate the association between crime incidence and proximity to different types of public schools over the past fifteen years in the city of Philadelphia. We employ two statistical methods, regression modeling and propensity score matching, in order to better isolate the association between crime and school proximity while controlling for the demographic, economic, land use and disorder characteristics of the surrounding neighborhood. With both of these approaches, we find significantly increased crime incidence near to public schools regardless of crime outcome, educational level and time period. The effect of school proximity on crime varies substantially depending on whether or not school is in session, as well as between different types of crime and educational levels of the school. We see the largest effects of school proximity on crime for violent crimes near to high schools during their in-session time periods. Our results support several theories which suggest that crime should be elevated near to schools, as well as finding significant associations between crime and other aspects of the built environment.
With the rapid growth of online misinformation, it is crucial to have reliable fact-checking methods. Recent research on finding check-worthy claims and automated fact-checking have made significant advancements. However, limited guidance exists regarding the presentation of fact-checked content to effectively convey verified information to users. We address this research gap by exploring the critical design elements in fact-checking reports and investigating whether credibility and presentation-based design improvements can enhance users' ability to interpret the report accurately. We co-developed potential content presentation strategies through a workshop involving fact-checking professionals, communication experts, and researchers. The workshop examined the significance and utility of elements such as veracity indicators and explored the feasibility of incorporating interactive components for enhanced information disclosure. Building on the workshop outcomes, we conducted an online experiment involving 76 crowd workers to assess the efficacy of different design strategies. The results indicate that proposed strategies significantly improve users' ability to accurately interpret the verdict of fact-checking articles. Our findings underscore the critical role of effective presentation of fact reports in addressing the spread of misinformation. By adopting appropriate design enhancements, the effectiveness of fact-checking reports can be maximized, enabling users to make informed judgments.
We introduce DeepNash, an autonomous agent capable of learning to play the imperfect information game Stratego from scratch, up to a human expert level. Stratego is one of the few iconic board games that Artificial Intelligence (AI) has not yet mastered. This popular game has an enormous game tree on the order of $10^{535}$ nodes, i.e., $10^{175}$ times larger than that of Go. It has the additional complexity of requiring decision-making under imperfect information, similar to Texas hold'em poker, which has a significantly smaller game tree (on the order of $10^{164}$ nodes). Decisions in Stratego are made over a large number of discrete actions with no obvious link between action and outcome. Episodes are long, with often hundreds of moves before a player wins, and situations in Stratego can not easily be broken down into manageably-sized sub-problems as in poker. For these reasons, Stratego has been a grand challenge for the field of AI for decades, and existing AI methods barely reach an amateur level of play. DeepNash uses a game-theoretic, model-free deep reinforcement learning method, without search, that learns to master Stratego via self-play. The Regularised Nash Dynamics (R-NaD) algorithm, a key component of DeepNash, converges to an approximate Nash equilibrium, instead of 'cycling' around it, by directly modifying the underlying multi-agent learning dynamics. DeepNash beats existing state-of-the-art AI methods in Stratego and achieved a yearly (2022) and all-time top-3 rank on the Gravon games platform, competing with human expert players.
Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish some tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize major approaches in the field, along with their technical strengths/ weaknesses, we have simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and motivates interested readers to consider approaches for designing effective human-in-the-loop solutions.
Deployment of Internet of Things (IoT) devices and Data Fusion techniques have gained popularity in public and government domains. This usually requires capturing and consolidating data from multiple sources. As datasets do not necessarily originate from identical sensors, fused data typically results in a complex data problem. Because military is investigating how heterogeneous IoT devices can aid processes and tasks, we investigate a multi-sensor approach. Moreover, we propose a signal to image encoding approach to transform information (signal) to integrate (fuse) data from IoT wearable devices to an image which is invertible and easier to visualize supporting decision making. Furthermore, we investigate the challenge of enabling an intelligent identification and detection operation and demonstrate the feasibility of the proposed Deep Learning and Anomaly Detection models that can support future application that utilizes hand gesture data from wearable devices.
This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.