亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Superconducting optoelectronic hardware is being explored as a path towards artificial spiking neural networks with unprecedented scales of complexity and computational ability. Such hardware combines integrated-photonic components for few-photon, light-speed communication with superconducting circuits for fast, energy-efficient computation. Monolithic integration of superconducting and photonic devices is necessary for the scaling of this technology. In the present work, superconducting-nanowire single-photon detectors are monolithically integrated with Josephson junctions for the first time, enabling the realization of superconducting optoelectronic synapses. We present circuits that perform analog weighting and temporal leaky integration of single-photon presynaptic signals. Synaptic weighting is implemented in the electronic domain so that binary, single-photon communication can be maintained. Records of recent synaptic activity are locally stored as current in superconducting loops. Dendritic and neuronal nonlinearities are implemented with a second stage of Josephson circuitry. The hardware presents great design flexibility, with demonstrated synaptic time constants spanning four orders of magnitude (hundreds of nanoseconds to milliseconds). The synapses are responsive to presynaptic spike rates exceeding 10 MHz and consume approximately 33 aJ of dynamic power per synapse event before accounting for cooling. In addition to neuromorphic hardware, these circuits introduce new avenues towards realizing large-scale single-photon-detector arrays for diverse imaging, sensing, and quantum communication applications.

相關內容

Due to its communication efficiency and privacy-preserving capability, federated learning (FL) has emerged as a promising framework for machine learning in 5G-and-beyond wireless networks. Of great interest is the design and optimization of new wireless network structures that support the stable and fast operation of FL. Cell-free massive multiple-input multiple-output (CFmMIMO) turns out to be a suitable candidate, which allows each communication round in the iterative FL process to be stably executed within a large-scale coherence time. Aiming to reduce the total execution time of the FL process in CFmMIMO, this paper proposes choosing only a subset of available users to participate in FL. An optimal selection of users with favorable link conditions would minimize the execution time of each communication round, while limiting the total number of communication rounds required. Toward this end, we formulate a joint optimization problem of user selection, transmit power, and processing frequency, subject to a predefined minimum number of participating users to guarantee the quality of learning. We then develop a new algorithm that is proven to converge to the neighbourhood of the stationary points of the formulated problem. Numerical results confirm that our proposed approach significantly reduces the FL total execution time over baseline schemes. The time reduction is more pronounced when the density of access point deployments is moderately low.

The massive multiple-input multiple-output (MIMO) transmission technology has recently attracted much attention in the non-geostationary, e.g., low earth orbit (LEO) satellite communication (SATCOM) systems since it can significantly improve the energy efficiency (EE) and spectral efficiency. In this work, we develop a hybrid analog/digital precoding technique in the massive MIMO LEO SATCOM downlink, which reduces the onboard hardware complexity and power consumption. In the proposed scheme, the analog precoder is implemented via a more practical twin-resolution phase shifting (TRPS) network to make a meticulous tradeoff between the power consumption and array gain. In addition, we consider and study the impact of the distortion effect of the nonlinear power amplifiers (NPAs) in the system design. By jointly considering all the above factors, we propose an efficient algorithmic approach for the TRPS-based hybrid precoding problem with NPAs. Numerical results show the EE gains considering the nonlinear distortion and the performance superiority of the proposed TRPS-based hybrid precoding scheme over the baselines.

In this article, a high-order time-stepping scheme based on the cubic interpolation formula is considered to approximate the generalized Caputo fractional derivative (GCFD). Convergence order for this scheme is $(4-\alpha),$ where $\alpha ~(0<\alpha<1)$ is the order of the GCFD. The local truncation error is also provided. Then, we adopt the developed scheme to establish a difference scheme for the solution of generalized fractional advection-diffusion equation with Dirichlet boundary conditions. Furthermore, we discuss about the stability and convergence of the difference scheme. Numerical examples are presented to examine the theoretical claims. The convergence order of the difference scheme is analyzed numerically, which is third-order in time and second-order in space.

We present a systematic refactoring of the conventional treatment of privacy analyses, basing it on mathematical concepts from the framework of Quantitative Information Flow (QIF). The approach we suggest brings three principal advantages: it is flexible, allowing for precise quantification and comparison of privacy risks for attacks both known and novel; it can be computationally tractable for very large, longitudinal datasets; and its results are explainable both to politicians and to the general public. We apply our approach to a very large case study: the Educational Censuses of Brazil, curated by the governmental agency INEP, which comprise over 90 attributes of approximately 50 million individuals released longitudinally every year since 2007. These datasets have only very recently (2018-2021) attracted legislation to regulate their privacy -- while at the same time continuing to maintain the openness that had been sought in Brazilian society. INEP's reaction to that legislation was the genesis of our project with them. In our conclusions here we share the scientific, technical, and communication lessons we learned in the process.

Efficient sampling and remote estimation are critical for a plethora of wireless-empowered applications in the Internet of Things and cyber-physical systems. Motivated by such applications, this work proposes decentralized policies for the real-time monitoring and estimation of autoregressive processes over random access channels. Two classes of policies are investigated: (i) oblivious schemes in which sampling and transmission policies are independent of the processes that are monitored, and (ii) non-oblivious schemes in which transmitters causally observe their corresponding processes for decision making. In the class of oblivious policies, we show that minimizing the expected time-average estimation error is equivalent to minimizing the expected age of information. Consequently, we prove lower and upper bounds on the minimum achievable estimation error in this class. Next, we consider non-oblivious policies and design a threshold policy, called error-based thinning, in which each source node becomes active if its instantaneous error has crossed a fixed threshold (which we optimize). Active nodes then transmit stochastically following a slotted ALOHA policy. A closed-form, approximately optimal, solution is found for the threshold as well as the resulting estimation error. It is shown that non-oblivious policies offer a multiplicative gain close to $3$ compared to oblivious policies. Moreover, it is shown that oblivious policies that use the age of information for decision making improve the state-of-the-art at least by the multiplicative factor $2$. The performance of all discussed policies is compared using simulations. The numerical comparison shows that the performance of the proposed decentralized policy is very close to that of centralized greedy scheduling.

The energy consumption of wireless networks is a growing concern. In massive MIMO systems, which are being increasingly deployed as part of the 5G roll-out, the power amplifiers in the base stations have a large impact in terms of power demands. Most of the current massive MIMO precoders are designed to minimize the transmit power. However, the efficiency of the power amplifiers depend on their operating regime with respect to their saturation regime, and the consumed power proves to be non-linearly related to the transmit power. Power consumption-based equivalents of maximum ratio transmission, zero-forcing, and regularized zero-forcing precoders are therefore proposed. We show how the structure of the solutions radically changes. While all antennas should be active in order to minimize the transmit power, we find on the contrary that a smaller number of antennas should be activated if the objective is the power consumed by the power amplifiers.

Reconfigurable Intelligent Surfaces (RISs) are envisioned to play a key role in future wireless communications, enabling programmable radio propagation environments. They are usually considered as almost passive planar structures that operate as adjustable reflectors, giving rise to a multitude of implementation challenges, including the inherent difficulty in estimating the underlying wireless channels. In this paper, we focus on the recently conceived concept of Hybrid Reconfigurable Intelligent Surfaces (HRISs), which do not solely reflect the impinging waveform in a controllable fashion, but are also capable of sensing and processing an adjustable portion of it. We first present implementation details for this metasurface architecture and propose a convenient mathematical model for characterizing its dual operation. As an indicative application of HRISs in wireless communications, we formulate the individual channel estimation problem for the uplink of a multi-user HRIS-empowered communication system. Considering first a noise-free setting, we theoretically quantify the advantage of HRISs in notably reducing the amount of pilots needed for channel estimation, as compared to the case of purely reflective RISs. We then present closed-form expressions for the MSE performance in estimating the individual channels at the HRISs and the base station for the noisy model. Based on these derivations, we propose an automatic differentiation-based first-order optimization approach to efficiently determine the HRIS phase and power splitting configurations for minimizing the weighted sum-MSE performance. Our numerical evaluations demonstrate that HRISs do not only enable the estimation of the individual channels in HRIS-empowered communication systems, but also improve the ability to recover the cascaded channel, as compared to existing methods using passive and reflective RISs.

The future where the industrial shop-floors witness humans and robots working in unison and the domestic households becoming a shared space for both these agents is not very far. The scientific community has been accelerating towards that future by extending their research efforts in human-robot interaction towards human-robot collaboration. It is possible that the anthropomorphic nature of the humanoid robots could deem the most suitable for such collaborations in semi-structured, human-centered environments. Wearable sensing technologies for human agents and efficient human-aware control strategies for the humanoid robot will be key in achieving a seamless human-humanoid collaboration. This is where reliable state estimation strategies become crucial in making sense of the information coming from multiple distributed sensors attached to the human and those on the robot to augment the feedback controllers designed for the humanoid robot to aid their human counterparts. In this context, this thesis investigates the theory of Lie groups for designing state estimation techniques aimed towards humanoid locomotion and human motion estimation. [continued]

In this paper, we are concerned with the numerical solution for the two-dimensional time fractional Fokker-Planck equation with tempered fractional derivative of order $\alpha$. Although some of its variants are considered in many recent numerical analysis papers, there are still some significant differences. Here we first provide the regularity estimates of the solution. And then a modified $L$1 scheme inspired by the middle rectangle quadrature formula on graded meshes is employed to compensate for the singularity of the solution at $t\rightarrow 0^{+}$, while the five-point difference scheme is used in space. Stability and convergence are proved in the sence of $L^{\infty}$ norm, then a sharp error estimate $\mathscr{O}(\tau^{\min\{2-\alpha, r\alpha\}})$ is derived on graded meshes. Furthermore, unlike the bounds proved in the previous works, the constant multipliers in our analysis do not blow up as the Caputo fractional derivative $\alpha$ approaches the classical value of 1. Finally, we perform the numerical experiments to verify the effectiveness and convergence order of the presented algorithms.

Timed automata are a common formalism for the verification of concurrent systems subject to timing constraints. They extend finite-state automata with clocks, that constrain the system behavior in locations, and to take transitions. While timed automata were originally designed for safety (in the wide sense of correctness w.r.t. a formal property), they were progressively used in a number of works to guarantee security properties. In this work, we review works studying security properties for timed automata in the last two decades. We notably review theoretical works, with a particular focus on opacity, as well as more practical works, with a particular focus on attack trees and their extensions. We derive main conclusions concerning open perspectives, as well as tool support.

北京阿比特科技有限公司