Backdoor attacks threaten Deep Neural Networks (DNNs). Towards stealthiness, researchers propose clean-label backdoor attacks, which require the adversaries not to alter the labels of the poisoned training datasets. Clean-label settings make the attack more stealthy due to the correct image-label pairs, but some problems still exist: first, traditional methods for poisoning training data are ineffective; second, traditional triggers are not stealthy which are still perceptible. To solve these problems, we propose a two-phase and image-specific triggers generation method to enhance clean-label backdoor attacks. Our methods are (1) powerful: our triggers can both promote the two phases (i.e., the backdoor implantation and activation phase) in backdoor attacks simultaneously; (2) stealthy: our triggers are generated from each image. They are image-specific instead of fixed triggers. Extensive experiments demonstrate that our approach can achieve a fantastic attack success rate~(98.98%) with low poisoning rate~(5%), high stealthiness under many evaluation metrics and is resistant to backdoor defense methods.
Due to the promising future of Automated Program Repair (APR), researchers have proposed various APR techniques, including heuristic-based, template-based, and constraint-based techniques. Among such classic APR techniques, template-based techniques have been widely recognized as state of the art. However, such template-based techniques require predefined templates to perform repair, and their effectiveness is thus limited. To this end, researchers leveraged the recent advances in Deep Learning to further improve APR. Such learning-based techniques view APR as a Neural Machine Translation problem, using the buggy/fixed code snippets as the source/target languages for translation. In this way, such techniques heavily rely on large numbers of high-quality bug-fixing commits, which can be extremely costly and challenging to construct. Furthermore, the edit variety of these learning-based techniques are limited to the available bug-fixes within their training datasets. Therefore, in this paper, we aim to revisit the learning-based APR problem, and propose AlphaRepair, to leverage zero-shot learning directly using large pre-trained code models for APR. Our main insight is instead of modeling what a repair edit should look like, we can directly predict what the correct code is based on the context information. We have implemented AlphaRepair as a practical multilingual APR tool based on the recent CodeBERT model. Our results on the widely used Defects4J benchmark show that AlphaRepair can substantially outperform state-of-the-art APR tools. We also studied the impact of different design choices and show that AlphaRepair performs even better on a newer version of Defects4J (2.0) with 3.3X more fixes than best performing baseline, indicating that AlphaRepair can potentially avoid the dataset-overfitting issue of existing learning-based techniques.
Due to the distributed nature of Federated Learning (FL), researchers have uncovered that FL is vulnerable to backdoor attacks, which aim at injecting a sub-task into the FL without corrupting the performance of the main task. Single-shot backdoor attack achieves high accuracy on both the main task and backdoor sub-task when injected at the FL model convergence. However, the early-injected single-shot backdoor attack is ineffective because: (1) the maximum backdoor effectiveness is not reached at injection because of the dilution effect from normal local updates; (2) the backdoor effect decreases quickly as the backdoor will be overwritten by the newcoming normal local updates. In this paper, we strengthen the early-injected single-shot backdoor attack utilizing FL model information leakage. We show that the FL convergence can be expedited if the client trains on a dataset that mimics the distribution and gradients of the whole population. Based on this observation, we proposed a two-phase backdoor attack, which includes a preliminary phase for the subsequent backdoor attack. In the preliminary phase, the attacker-controlled client first launches a whole population distribution inference attack and then trains on a locally crafted dataset that is aligned with both the gradient and inferred distribution. Benefiting from the preliminary phase, the later injected backdoor achieves better effectiveness as the backdoor effect will be less likely to be diluted by the normal model updates. Extensive experiments are conducted on MNIST dataset under various data heterogeneity settings to evaluate the effectiveness of the proposed backdoor attack. Results show that the proposed backdoor outperforms existing backdoor attacks in both success rate and longevity, even when defense mechanisms are in place.
The goal of dialogue relation extraction (DRE) is to identify the relation between two entities in a given dialogue. During conversations, speakers may expose their relations to certain entities by explicit or implicit clues, such evidences called "triggers". However, trigger annotations may not be always available for the target data, so it is challenging to leverage such information for enhancing the performance. Therefore, this paper proposes to learn how to identify triggers from the data with trigger annotations and then transfers the trigger-finding capability to other datasets for better performance. The experiments show that the proposed approach is capable of improving relation extraction performance of unseen relations and also demonstrate the transferability of our proposed trigger-finding model across different domains and datasets.
To explore the vulnerability of deep neural networks (DNNs), many attack paradigms have been well studied, such as the poisoning-based backdoor attack in the training stage and the adversarial attack in the inference stage. In this paper, we study a novel attack paradigm, which modifies model parameters in the deployment stage. Considering the effectiveness and stealthiness goals, we provide a general formulation to perform the bit-flip based weight attack, where the effectiveness term could be customized depending on the attacker's purpose. Furthermore, we present two cases of the general formulation with different malicious purposes, i.e., single sample attack (SSA) and triggered samples attack (TSA). To this end, we formulate this problem as a mixed integer programming (MIP) to jointly determine the state of the binary bits (0 or 1) in the memory and learn the sample modification. Utilizing the latest technique in integer programming, we equivalently reformulate this MIP problem as a continuous optimization problem, which can be effectively and efficiently solved using the alternating direction method of multipliers (ADMM) method. Consequently, the flipped critical bits can be easily determined through optimization, rather than using a heuristic strategy. Extensive experiments demonstrate the superiority of SSA and TSA in attacking DNNs.
Recent works have demonstrated that deep learning models are vulnerable to backdoor poisoning attacks, where these attacks instill spurious correlations to external trigger patterns or objects (e.g., stickers, sunglasses, etc.). We find that such external trigger signals are unnecessary, as highly effective backdoors can be easily inserted using rotation-based image transformation. Our method constructs the poisoned dataset by rotating a limited amount of objects and labeling them incorrectly; once trained with it, the victim's model will make undesirable predictions during run-time inference. It exhibits a significantly high attack success rate while maintaining clean performance through comprehensive empirical studies on image classification and object detection tasks. Furthermore, we evaluate standard data augmentation techniques and four different backdoor defenses against our attack and find that none of them can serve as a consistent mitigation approach. Our attack can be easily deployed in the real world since it only requires rotating the object, as we show in both image classification and object detection applications. Overall, our work highlights a new, simple, physically realizable, and highly effective vector for backdoor attacks. Our video demo is available at //youtu.be/6JIF8wnX34M.
Backdoor attack intends to embed hidden backdoor into deep neural networks (DNNs), such that the attacked model performs well on benign samples, whereas its prediction will be maliciously changed if the hidden backdoor is activated by the attacker-defined trigger. Backdoor attack could happen when the training process is not fully controlled by the user, such as training on third-party datasets or adopting third-party models, which poses a new and realistic threat. Although backdoor learning is an emerging and rapidly growing research area, its systematic review, however, remains blank. In this paper, we present the first comprehensive survey of this realm. We summarize and categorize existing backdoor attacks and defenses based on their characteristics, and provide a unified framework for analyzing poisoning-based backdoor attacks. Besides, we also analyze the relation between backdoor attacks and the relevant fields ($i.e.,$ adversarial attack and data poisoning), and summarize the benchmark datasets. Finally, we briefly outline certain future research directions relying upon reviewed works.
Graph convolutional neural networks have recently shown great potential for the task of zero-shot learning. These models are highly sample efficient as related concepts in the graph structure share statistical strength allowing generalization to new classes when faced with a lack of data. However, multi-layer architectures, which are required to propagate knowledge to distant nodes in the graph, dilute the knowledge by performing extensive Laplacian smoothing at each layer and thereby consequently decrease performance. In order to still enjoy the benefit brought by the graph structure while preventing dilution of knowledge from distant nodes, we propose a Dense Graph Propagation (DGP) module with carefully designed direct links among distant nodes. DGP allows us to exploit the hierarchical graph structure of the knowledge graph through additional connections. These connections are added based on a node's relationship to its ancestors and descendants. A weighting scheme is further used to weigh their contribution depending on the distance to the node to improve information propagation in the graph. Combined with finetuning of the representations in a two-stage training approach our method outperforms state-of-the-art zero-shot learning approaches.
Video anomaly detection under weak labels is formulated as a typical multiple-instance learning problem in previous works. In this paper, we provide a new perspective, i.e., a supervised learning task under noisy labels. In such a viewpoint, as long as cleaning away label noise, we can directly apply fully supervised action classifiers to weakly supervised anomaly detection, and take maximum advantage of these well-developed classifiers. For this purpose, we devise a graph convolutional network to correct noisy labels. Based upon feature similarity and temporal consistency, our network propagates supervisory signals from high-confidence snippets to low-confidence ones. In this manner, the network is capable of providing cleaned supervision for action classifiers. During the test phase, we only need to obtain snippet-wise predictions from the action classifier without any extra post-processing. Extensive experiments on 3 datasets at different scales with 2 types of action classifiers demonstrate the efficacy of our method. Remarkably, we obtain the frame-level AUC score of 82.12% on UCF-Crime.
We study the problem of named entity recognition (NER) from electronic medical records, which is one of the most fundamental and critical problems for medical text mining. Medical records which are written by clinicians from different specialties usually contain quite different terminologies and writing styles. The difference of specialties and the cost of human annotation makes it particularly difficult to train a universal medical NER system. In this paper, we propose a label-aware double transfer learning framework (La-DTL) for cross-specialty NER, so that a medical NER system designed for one specialty could be conveniently applied to another one with minimal annotation efforts. The transferability is guaranteed by two components: (i) we propose label-aware MMD for feature representation transfer, and (ii) we perform parameter transfer with a theoretical upper bound which is also label aware. We conduct extensive experiments on 12 cross-specialty NER tasks. The experimental results demonstrate that La-DTL provides consistent accuracy improvement over strong baselines. Besides, the promising experimental results on non-medical NER scenarios indicate that La-DTL is potential to be seamlessly adapted to a wide range of NER tasks.
We propose a new method for event extraction (EE) task based on an imitation learning framework, specifically, inverse reinforcement learning (IRL) via generative adversarial network (GAN). The GAN estimates proper rewards according to the difference between the actions committed by the expert (or ground truth) and the agent among complicated states in the environment. EE task benefits from these dynamic rewards because instances and labels yield to various extents of difficulty and the gains are expected to be diverse -- e.g., an ambiguous but correctly detected trigger or argument should receive high gains -- while the traditional RL models usually neglect such differences and pay equal attention on all instances. Moreover, our experiments also demonstrate that the proposed framework outperforms state-of-the-art methods, without explicit feature engineering.