亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper studies the monotonicity of equilibrium costs and equilibrium loads in nonatomic congestion games, in response to variations of the demands. The main goal is to identify conditions under which a paradoxical non-monotone behavior can be excluded. In contrast to routing games with a single commodity, where the network topology is the sole determinant factor for monotonicity, for general congestion games with multiple commodities the structure of the strategy sets plays a crucial role. We frame our study in the general setting of congestion games, with a special focus on singleton congestion games, for which we establish the monotonicity of equilibrium loads with respect to every demand. We then provide conditions for comonotonicity of the equilibrium loads, i.e., we investigate when they jointly increase or decrease after variations of the demands. We finally extend our study from singleton congestion games to the larger class of constrained series-parallel congestion games, whose structure is reminiscent of the concept of a series-parallel network.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

When constructing parametric models to predict the cost of future claims, several important details have to be taken into account: (i) models should be designed to accommodate deductibles, policy limits, and coinsurance factors, (ii) parameters should be estimated robustly to control the influence of outliers on model predictions, and (iii) all point predictions should be augmented with estimates of their uncertainty. The methodology proposed in this paper provides a framework for addressing all these aspects simultaneously. Using payment-per-payment and payment-per-loss variables, we construct the adaptive version of method of winsorized moments (MWM) estimators for the parameters of truncated and censored lognormal distribution. Further, the asymptotic distributional properties of this approach are derived and compared with those of the maximum likelihood estimator (MLE) and method of trimmed moments (MTM) estimators. The latter being a primary competitor to MWM. Moreover, the theoretical results are validated with extensive simulation studies and risk measure sensitivity analysis. Finally, practical performance of these methods is illustrated using the well-studied data set of 1500 U.S. indemnity losses. With this real data set, it is also demonstrated that the composite models do not provide much improvement in the quality of predictive models compared to a stand-alone fitted distribution specially for truncated and censored sample data.

Natural Language Generation (NLG) has improved exponentially in recent years thanks to the development of sequence-to-sequence deep learning technologies such as Transformer-based language models. This advancement has led to more fluent and coherent NLG, leading to improved development in downstream tasks such as abstractive summarization, dialogue generation and data-to-text generation. However, it is also apparent that deep learning based generation is prone to hallucinate unintended text, which degrades the system performance and fails to meet user expectations in many real-world scenarios. To address this issue, many studies have been presented in measuring and mitigating hallucinated texts, but these have never been reviewed in a comprehensive manner before. In this survey, we thus provide a broad overview of the research progress and challenges in the hallucination problem in NLG. The survey is organized into two parts: (1) a general overview of metrics, mitigation methods, and future directions; (2) an overview of task-specific research progress on hallucinations in the following downstream tasks, namely abstractive summarization, dialogue generation, generative question answering, data-to-text generation, machine translation, and visual-language generation; and (3) hallucinations in large language models (LLMs). This survey serves to facilitate collaborative efforts among researchers in tackling the challenge of hallucinated texts in NLG.

This study focuses on the implementation of modern and intelligent logistics vehicles equipped with advanced tracking and security features. In response to the evolving landscape of logistics management, the proposed system integrates cutting edge technologies to enhance efficiency and ensure the security of the entire logistics process. The core component of this implementation is the incorporation of state-of-the art tracking mechanisms, enabling real-time monitoring of vehicle locations and movements. Furthermore, the system addresses the paramount concern of security by introducing advanced security measures. Through the utilization of sophisticated tracking technologies and security protocols, the proposed logistics vehicles aim to safeguard both customer and provider data. The implementation includes the integration of QR code concepts, creating a binary image system that conceals sensitive information and ensures access only to authorized users. In addition to tracking and security, the study delves into the realm of information mining, employing techniques such as classification, clustering, and recommendation to extract meaningful patterns from vast datasets. Collaborative filtering techniques are incorporated to enhance customer experience by recommending services based on user preferences and historical data. This abstract encapsulates the comprehensive approach of deploying modern logistics vehicles, emphasizing their intelligence through advanced tracking, robust security measures, and data-driven insights. The proposed system aims to revolutionize logistics management, providing a seamless and secure experience for both customers and service providers in the dynamic logistics landscape.

Enterprise Application Integration deals with the problem of connecting heterogeneous applications, and is the centerpiece of current on-premise, cloud and device integration scenarios. For integration scenarios, structurally correct composition of patterns into processes and improvements of integration processes are crucial. In order to achieve this, we formalize compositions of integration patterns based on their characteristics, and describe optimization strategies that help to reduce the model complexity, and improve the process execution efficiency using design time techniques. Using the formalism of timed DB-nets - a refinement of Petri nets - we model integration logic features such as control- and data flow, transactional data storage, compensation and exception handling, and time aspects that are present in reoccurring solutions as separate integration patterns. We then propose a realization of optimization strategies using graph rewriting, and prove that the optimizations we consider preserve both structural and functional correctness. We evaluate the improvements on a real-world catalog of pattern compositions, containing over 900 integration processes, and illustrate the correctness properties in case studies based on two of these processes.

We prove impossibility results for adaptivity in non-smooth stochastic convex optimization. Given a set of problem parameters we wish to adapt to, we define a "price of adaptivity" (PoA) that, roughly speaking, measures the multiplicative increase in suboptimality due to uncertainty in these parameters. When the initial distance to the optimum is unknown but a gradient norm bound is known, we show that the PoA is at least logarithmic for expected suboptimality, and double-logarithmic for median suboptimality. When there is uncertainty in both distance and gradient norm, we show that the PoA must be polynomial in the level of uncertainty. Our lower bounds nearly match existing upper bounds, and establish that there is no parameter-free lunch.

Reasoning, a crucial ability for complex problem-solving, plays a pivotal role in various real-world settings such as negotiation, medical diagnosis, and criminal investigation. It serves as a fundamental methodology in the field of Artificial General Intelligence (AGI). With the ongoing development of foundation models, e.g., Large Language Models (LLMs), there is a growing interest in exploring their abilities in reasoning tasks. In this paper, we introduce seminal foundation models proposed or adaptable for reasoning, highlighting the latest advancements in various reasoning tasks, methods, and benchmarks. We then delve into the potential future directions behind the emergence of reasoning abilities within foundation models. We also discuss the relevance of multimodal learning, autonomous agents, and super alignment in the context of reasoning. By discussing these future research directions, we hope to inspire researchers in their exploration of this field, stimulate further advancements in reasoning with foundation models, and contribute to the development of AGI.

Learning on big data brings success for artificial intelligence (AI), but the annotation and training costs are expensive. In future, learning on small data is one of the ultimate purposes of AI, which requires machines to recognize objectives and scenarios relying on small data as humans. A series of machine learning models is going on this way such as active learning, few-shot learning, deep clustering. However, there are few theoretical guarantees for their generalization performance. Moreover, most of their settings are passive, that is, the label distribution is explicitly controlled by one specified sampling scenario. This survey follows the agnostic active sampling under a PAC (Probably Approximately Correct) framework to analyze the generalization error and label complexity of learning on small data using a supervised and unsupervised fashion. With these theoretical analyses, we categorize the small data learning models from two geometric perspectives: the Euclidean and non-Euclidean (hyperbolic) mean representation, where their optimization solutions are also presented and discussed. Later, some potential learning scenarios that may benefit from small data learning are then summarized, and their potential learning scenarios are also analyzed. Finally, some challenging applications such as computer vision, natural language processing that may benefit from learning on small data are also surveyed.

Promoting behavioural diversity is critical for solving games with non-transitive dynamics where strategic cycles exist, and there is no consistent winner (e.g., Rock-Paper-Scissors). Yet, there is a lack of rigorous treatment for defining diversity and constructing diversity-aware learning dynamics. In this work, we offer a geometric interpretation of behavioural diversity in games and introduce a novel diversity metric based on \emph{determinantal point processes} (DPP). By incorporating the diversity metric into best-response dynamics, we develop \emph{diverse fictitious play} and \emph{diverse policy-space response oracle} for solving normal-form games and open-ended games. We prove the uniqueness of the diverse best response and the convergence of our algorithms on two-player games. Importantly, we show that maximising the DPP-based diversity metric guarantees to enlarge the \emph{gamescape} -- convex polytopes spanned by agents' mixtures of strategies. To validate our diversity-aware solvers, we test on tens of games that show strong non-transitivity. Results suggest that our methods achieve much lower exploitability than state-of-the-art solvers by finding effective and diverse strategies.

Co-evolving time series appears in a multitude of applications such as environmental monitoring, financial analysis, and smart transportation. This paper aims to address the following challenges, including (C1) how to incorporate explicit relationship networks of the time series; (C2) how to model the implicit relationship of the temporal dynamics. We propose a novel model called Network of Tensor Time Series, which is comprised of two modules, including Tensor Graph Convolutional Network (TGCN) and Tensor Recurrent Neural Network (TRNN). TGCN tackles the first challenge by generalizing Graph Convolutional Network (GCN) for flat graphs to tensor graphs, which captures the synergy between multiple graphs associated with the tensors. TRNN leverages tensor decomposition to model the implicit relationships among co-evolving time series. The experimental results on five real-world datasets demonstrate the efficacy of the proposed method.

Recent developments in image classification and natural language processing, coupled with the rapid growth in social media usage, have enabled fundamental advances in detecting breaking events around the world in real-time. Emergency response is one such area that stands to gain from these advances. By processing billions of texts and images a minute, events can be automatically detected to enable emergency response workers to better assess rapidly evolving situations and deploy resources accordingly. To date, most event detection techniques in this area have focused on image-only or text-only approaches, limiting detection performance and impacting the quality of information delivered to crisis response teams. In this paper, we present a new multimodal fusion method that leverages both images and texts as input. In particular, we introduce a cross-attention module that can filter uninformative and misleading components from weak modalities on a sample by sample basis. In addition, we employ a multimodal graph-based approach to stochastically transition between embeddings of different multimodal pairs during training to better regularize the learning process as well as dealing with limited training data by constructing new matched pairs from different samples. We show that our method outperforms the unimodal approaches and strong multimodal baselines by a large margin on three crisis-related tasks.

北京阿比特科技有限公司