亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Prompt tuning is a parameter-efficient way to deploy large-scale pre-trained models to downstream tasks by adding task-specific tokens. In terms of vision-language pre-trained (VLP) models, prompt tuning often requires a large number of learnable tokens to bridge the gap between the pre-training and downstream tasks, which greatly exacerbates the already high computational overhead. In this paper, we revisit the principle of prompt tuning for Transformer-based VLP models, and reveal that the impact of soft prompt tokens can be actually approximated via independent information diffusion steps, thereby avoiding the expensive global attention modeling and reducing the computational complexity to a large extent. Based on this finding, we propose a novel Approximated Prompt Tuning (APT) approach towards efficient VL transfer learning. To validate APT, we apply it to two representative VLP models, namely ViLT and METER, and conduct extensive experiments on a bunch of downstream tasks. Meanwhile, the generalization of APT is also validated on CLIP for image classification and StableDiffusion for text-to-image generation. The experimental results not only show the superior performance gains and computation efficiency of APT against the conventional prompt tuning methods, e.g., +7.01% accuracy and -82.30% additional computation overhead on METER, but also confirm its merits over other parameter-efficient transfer learning approaches.

相關內容

Current perception models in autonomous driving heavily rely on large-scale labelled 3D data, which is both costly and time-consuming to annotate. This work proposes a solution to reduce the dependence on labelled 3D training data by leveraging pre-training on large-scale unlabeled outdoor LiDAR point clouds using masked autoencoders (MAE). While existing masked point autoencoding methods mainly focus on small-scale indoor point clouds or pillar-based large-scale outdoor LiDAR data, our approach introduces a new self-supervised masked occupancy pre-training method called Occupancy-MAE, specifically designed for voxel-based large-scale outdoor LiDAR point clouds. Occupancy-MAE takes advantage of the gradually sparse voxel occupancy structure of outdoor LiDAR point clouds and incorporates a range-aware random masking strategy and a pretext task of occupancy prediction. By randomly masking voxels based on their distance to the LiDAR and predicting the masked occupancy structure of the entire 3D surrounding scene, Occupancy-MAE encourages the extraction of high-level semantic information to reconstruct the masked voxel using only a small number of visible voxels. Extensive experiments demonstrate the effectiveness of Occupancy-MAE across several downstream tasks. For 3D object detection, Occupancy-MAE reduces the labelled data required for car detection on the KITTI dataset by half and improves small object detection by approximately 2% in AP on the Waymo dataset. For 3D semantic segmentation, Occupancy-MAE outperforms training from scratch by around 2% in mIoU. For multi-object tracking, Occupancy-MAE enhances training from scratch by approximately 1% in terms of AMOTA and AMOTP. Codes are publicly available at //github.com/chaytonmin/Occupancy-MAE.

Backdoor attacks aim to surreptitiously insert malicious triggers into DNN models, granting unauthorized control during testing scenarios. Existing methods lack robustness against defense strategies and predominantly focus on enhancing trigger stealthiness while randomly selecting poisoned samples. Our research highlights the overlooked drawbacks of random sampling, which make that attack detectable and defensible. The core idea of this paper is to strategically poison samples near the model's decision boundary and increase defense difficulty. We introduce a straightforward yet highly effective sampling methodology that leverages confidence scores. Specifically, it selects samples with lower confidence scores, significantly increasing the challenge for defenders in identifying and countering these attacks. Importantly, our method operates independently of existing trigger designs, providing versatility and compatibility with various backdoor attack techniques. We substantiate the effectiveness of our approach through a comprehensive set of empirical experiments, demonstrating its potential to significantly enhance resilience against backdoor attacks in DNNs.

Low-rank multivariate regression (LRMR) is an important statistical learning model that combines highly correlated tasks as a multiresponse regression problem with low-rank priori on the coefficient matrix. In this paper, we study quantized LRMR, a practical setting where the responses and/or the covariates are discretized to finite precision. We focus on the estimation of the underlying coefficient matrix. To make consistent estimator that could achieve arbitrarily small error possible, we employ uniform quantization with random dithering, i.e., we add appropriate random noise to the data before quantization. Specifically, uniform dither and triangular dither are used for responses and covariates, respectively. Based on the quantized data, we propose the constrained Lasso and regularized Lasso estimators, and derive the non-asymptotic error bounds. With the aid of dithering, the estimators achieve minimax optimal rate, while quantization only slightly worsens the multiplicative factor in the error rate. Moreover, we extend our results to a low-rank regression model with matrix responses. We corroborate and demonstrate our theoretical results via simulations on synthetic data or image restoration.

Carbon footprint quantification is key to well-informed decision making over carbon reduction potential, both for individuals and for companies. Many carbon footprint case studies for products and services have been circulated recently. Due to the complex relationships within each scenario, however, the underlying assumptions often are difficult to understand. Also, re-using and adapting a scenario to local or individual circumstances is not a straightforward task. To overcome these challenges, we propose an open and linked data model for carbon footprint scenarios which improves data quality and transparency by design. We demonstrate the implementation of our idea with a web-based data interpreter prototype.

State-of-the-art (SOTA) object detection methods have succeeded in several applications at the price of relying on heavyweight neural networks, which makes them inefficient and inviable for many applications with computational resource constraints. This work presents a method to build a Convolutional Neural Network (CNN) layer by layer for object detection from user-drawn markers on discriminative regions of representative images. We address the detection of Schistosomiasis mansoni eggs in microscopy images of fecal samples, and the detection of ships in satellite images as application examples. We could create a flyweight CNN without backpropagation from very few input images. Our method explores a recent methodology, Feature Learning from Image Markers (FLIM), to build convolutional feature extractors (encoders) from marker pixels. We extend FLIM to include a single-layer adaptive decoder, whose weights vary with the input image -- a concept never explored in CNNs. Our CNN weighs thousands of times less than SOTA object detectors, being suitable for CPU execution and showing superior or equivalent performance to three methods in five measures.

Hybrid model predictive control (MPC) with both continuous and discrete variables is widely applicable to robotic control tasks, especially those involving contact with the environment. Due to the combinatorial complexity, the solving speed of hybrid MPC can be insufficient for real-time applications. In this paper, we proposed a hybrid MPC solver based on Generalized Benders Decomposition (GBD) with continual learning. The algorithm accumulates cutting planes from the invariant dual space of the subproblems. After a short cold-start phase, the accumulated cuts provide warm-starts for the new problem instances to increase the solving speed. Despite the randomly changing environment that the control is unprepared for, the solving speed maintains. We verified our solver on controlling a cart-pole system with randomly moving soft contact walls and show that the solving speed is 2-3 times faster than the off-the-shelf solver Gurobi.

The objective of Continual Test-time Domain Adaptation (CTDA) is to gradually adapt a pre-trained model to a sequence of target domains without accessing the source data. This paper proposes a Dynamic Sample Selection (DSS) method for CTDA. DSS consists of dynamic thresholding, positive learning, and negative learning processes. Traditionally, models learn from unlabeled unknown environment data and equally rely on all samples' pseudo-labels to update their parameters through self-training. However, noisy predictions exist in these pseudo-labels, so all samples are not equally trustworthy. Therefore, in our method, a dynamic thresholding module is first designed to select suspected low-quality from high-quality samples. The selected low-quality samples are more likely to be wrongly predicted. Therefore, we apply joint positive and negative learning on both high- and low-quality samples to reduce the risk of using wrong information. We conduct extensive experiments that demonstrate the effectiveness of our proposed method for CTDA in the image domain, outperforming the state-of-the-art results. Furthermore, our approach is also evaluated in the 3D point cloud domain, showcasing its versatility and potential for broader applicability.

Recently pre-trained language representation models such as BERT have shown great success when fine-tuned on downstream tasks including information retrieval (IR). However, pre-training objectives tailored for ad-hoc retrieval have not been well explored. In this paper, we propose Pre-training with Representative wOrds Prediction (PROP) for ad-hoc retrieval. PROP is inspired by the classical statistical language model for IR, specifically the query likelihood model, which assumes that the query is generated as the piece of text representative of the "ideal" document. Based on this idea, we construct the representative words prediction (ROP) task for pre-training. Given an input document, we sample a pair of word sets according to the document language model, where the set with higher likelihood is deemed as more representative of the document. We then pre-train the Transformer model to predict the pairwise preference between the two word sets, jointly with the Masked Language Model (MLM) objective. By further fine-tuning on a variety of representative downstream ad-hoc retrieval tasks, PROP achieves significant improvements over baselines without pre-training or with other pre-training methods. We also show that PROP can achieve exciting performance under both the zero- and low-resource IR settings. The code and pre-trained models are available at //github.com/Albert-Ma/PROP.

Sampling methods (e.g., node-wise, layer-wise, or subgraph) has become an indispensable strategy to speed up training large-scale Graph Neural Networks (GNNs). However, existing sampling methods are mostly based on the graph structural information and ignore the dynamicity of optimization, which leads to high variance in estimating the stochastic gradients. The high variance issue can be very pronounced in extremely large graphs, where it results in slow convergence and poor generalization. In this paper, we theoretically analyze the variance of sampling methods and show that, due to the composite structure of empirical risk, the variance of any sampling method can be decomposed into \textit{embedding approximation variance} in the forward stage and \textit{stochastic gradient variance} in the backward stage that necessities mitigating both types of variance to obtain faster convergence rate. We propose a decoupled variance reduction strategy that employs (approximate) gradient information to adaptively sample nodes with minimal variance, and explicitly reduces the variance introduced by embedding approximation. We show theoretically and empirically that the proposed method, even with smaller mini-batch sizes, enjoys a faster convergence rate and entails a better generalization compared to the existing methods.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司