As medical ultrasound is becoming a prevailing examination approach nowadays, robotic ultrasound systems can facilitate the scanning process and prevent professional sonographers from repetitive and tedious work. Despite the recent progress, it is still a challenge to enable robots to autonomously accomplish the ultrasound examination, which is largely due to the lack of a proper task representation method, and also an adaptation approach to generalize learned skills across different patients. To solve these problems, we propose the latent task representation and the robotic skills adaptation for autonomous ultrasound in this paper. During the offline stage, the multimodal ultrasound skills are merged and encapsulated into a low-dimensional probability model through a fully self-supervised framework, which takes clinically demonstrated ultrasound images, probe orientations, and contact forces into account. During the online stage, the probability model will select and evaluate the optimal prediction. For unstable singularities, the adaptive optimizer fine-tunes them to near and stable predictions in high-confidence regions. Experimental results show that the proposed approach can generate complex ultrasound strategies for diverse populations and achieve significantly better quantitative results than our previous method.
Obtaining sparse, interpretable representations of observable data is crucial in many machine learning and signal processing tasks. For data representing flows along the edges of a graph, an intuitively interpretable way to obtain such representations is to lift the graph structure to a simplicial complex: The eigenvectors of the associated Hodge-Laplacian, respectively the incidence matrices of the corresponding simplicial complex then induce a Hodge decomposition, which can be used to represent the observed data in terms of gradient, curl, and harmonic flows. In this paper, we generalize this approach to cellular complexes and introduce the cell inference optimization problem, i.e., the problem of augmenting the observed graph by a set of cells, such that the eigenvectors of the associated Hodge Laplacian provide a sparse, interpretable representation of the observed edge flows on the graph. We show that this problem is NP-hard and introduce an efficient approximation algorithm for its solution. Experiments on real-world and synthetic data demonstrate that our algorithm outperforms current state-of-the-art methods while being computationally efficient.
Invariance describes transformations that do not alter data's underlying semantics. Neural networks that preserve natural invariance capture good inductive biases and achieve superior performance. Hence, modern networks are handcrafted to handle well-known invariances (ex. translations). We propose a framework to learn novel network architectures that capture data-dependent invariances via pruning. Our learned architectures consistently outperform dense neural networks on both vision and tabular datasets in both efficiency and effectiveness. We demonstrate our framework on multiple deep learning models across 3 vision and 40 tabular datasets.
Automatic identification of clinical trials for which a patient is eligible is complicated by the fact that trial eligibility is stated in natural language. A potential solution to this problem is to employ text classification methods for common types of eligibility criteria. In this study, we focus on seven common exclusion criteria in cancer trials: prior malignancy, human immunodeficiency virus, hepatitis B, hepatitis C, psychiatric illness, drug/substance abuse, and autoimmune illness. Our dataset consists of 764 phase III cancer trials with these exclusions annotated at the trial level. We experiment with common transformer models as well as a new pre-trained clinical trial BERT model. Our results demonstrate the feasibility of automatically classifying common exclusion criteria. Additionally, we demonstrate the value of a pre-trained language model specifically for clinical trials, which yields the highest average performance across all criteria.
In the presence of heterogeneous data, where randomly rotated objects fall into multiple underlying categories, it is challenging to simultaneously classify them into clusters and synchronize them based on pairwise relations. This gives rise to the joint problem of community detection and synchronization. We propose a series of semidefinite relaxations, and prove their exact recovery when extending the celebrated stochastic block model to this new setting where both rotations and cluster identities are to be determined. Numerical experiments demonstrate the efficacy of our proposed algorithms and confirm our theoretical result which indicates a sharp phase transition for exact recovery.
Emotion detection is a critical technology extensively employed in diverse fields. While the incorporation of commonsense knowledge has proven beneficial for existing emotion detection methods, dialogue-based emotion detection encounters numerous difficulties and challenges due to human agency and the variability of dialogue content.In dialogues, human emotions tend to accumulate in bursts. However, they are often implicitly expressed. This implies that many genuine emotions remain concealed within a plethora of unrelated words and dialogues.In this paper, we propose a Dynamic Causal Disentanglement Model based on hidden variable separation, which is founded on the separation of hidden variables. This model effectively decomposes the content of dialogues and investigates the temporal accumulation of emotions, thereby enabling more precise emotion recognition. First, we introduce a novel Causal Directed Acyclic Graph (DAG) to establish the correlation between hidden emotional information and other observed elements. Subsequently, our approach utilizes pre-extracted personal attributes and utterance topics as guiding factors for the distribution of hidden variables, aiming to separate irrelevant ones. Specifically, we propose a dynamic temporal disentanglement model to infer the propagation of utterances and hidden variables, enabling the accumulation of emotion-related information throughout the conversation. To guide this disentanglement process, we leverage the ChatGPT-4.0 and LSTM networks to extract utterance topics and personal attributes as observed information.Finally, we test our approach on two popular datasets in dialogue emotion detection and relevant experimental results verified the model's superiority.
With the recent emergence of mixed precision hardware, there has been a renewed interest in its use for solving numerical linear algebra problems fast and accurately. The solution of total least squares problems, i.e., solving $\min_{E,r} \| [E, r]\|_F$ subject to $(A+E)x=b+r$, arises in numerous applications. Solving this problem requires finding the smallest singular value and corresponding right singular vector of $[A,b]$, which is challenging when $A$ is large and sparse. An efficient algorithm for this case due to Bj\"{o}rck et al. [SIAM J. Matrix Anal. Appl. 22(2), 2000], called RQI-PCGTLS, is based on Rayleigh quotient iteration coupled with the preconditioned conjugate gradient method. We develop a mixed precision variant of this algorithm, RQI-PCGTLS-MP, in which up to three different precisions can be used. We assume that the lowest precision is used in the computation of the preconditioner, and give theoretical constraints on how this precision must be chosen to ensure stability. In contrast to standard least squares, for total least squares, the resulting constraint depends not only on the matrix $A$, but also on the right-hand side $b$. We perform a number of numerical experiments on model total least squares problems used in the literature, which demonstrate that our algorithm can attain the same accuracy as RQI-PCGTLS albeit with a potential convergence delay due to the use of low precision. Performance modeling shows that the mixed precision approach can achieve up to a $4\times$ speedup depending on the size of the matrix and the number of Rayleigh quotient iterations performed.
In order for robots to safely navigate in unseen scenarios using learning-based methods, it is important to accurately detect out-of-training-distribution (OoD) situations online. Recently, Gaussian process state-space models (GPSSMs) have proven useful to discriminate unexpected observations by comparing them against probabilistic predictions. However, the capability for the model to correctly distinguish between in- and out-of-training distribution observations hinges on the accuracy of these predictions, primarily affected by the class of functions the GPSSM kernel can represent. In this paper, we propose (i) a novel approach to embed existing domain knowledge in the kernel and (ii) an OoD online runtime monitor, based on receding-horizon predictions. Domain knowledge is assumed given as a dataset collected either in simulation or using a nominal model. Numerical results show that the informed kernel yields better regression quality with smaller datasets, as compared to standard kernel choices. We demonstrate the effectiveness of the OoD monitor on a real quadruped navigating an indoor setting, which reliably classifies previously unseen terrains.
Ubiquitous robot control and human-robot collaboration using smart devices poses a challenging problem primarily due to strict accuracy requirements and sparse information. This paper presents a novel approach that incorporates a probabilistic differentiable filter, specifically the Differentiable Ensemble Kalman Filter (DEnKF), to facilitate robot control solely using Inertial Measurement Units (IMUs) observations from a smartwatch and a smartphone. The implemented system achieves accurate estimation of human pose state with a reduction of 30.2% compared to the baseline using the Mean Per Joint Vertex Error (MPJVE). Our results foster smartwatches and smartphones as a cost-effective alternative human-pose state estimation. Furthermore, experiment results from human-robot handover tasks underscore that smart devices allow for low-cost, versatile and ubiquitous robot control.
Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).
Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.