亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The emerging modular vehicle (MV) technology possesses the ability to physically connect/disconnect with each other and thus travel in platoon for less energy consumption. Moreover, a platoon of MVs can be regarded as a new bus-like platform with expanded on-board carrying capacity and provide larger service throughput according to the demand density. This innovation concept might solve the mismatch problems between the fixed vehicle capacity and the temporal-spatial variations of demand in current transportation system. To obtain the optimal assignments and routes for the operation of MVs, a mixed integer linear programming (MILP) model is formulated to minimize the weighted total cost of vehicle travel cost and passenger service time. The temporal and spatial synchronization of vehicle platoons and passenger en-route transfers are determined and optimized by the MILP model while constructing the paths. Heuristic algorithms based on large neighborhood search are developed to solve the modular dial-a-ride problem (MDARP) for practical scenarios. A set of small-scale synthetic numerical experiments are tested to evaluate the optimality gap and computation time between our proposed MILP model and heuristic algorithms. Large-scale experiments are conducted on the Anaheim network with 378 candidate join/split nodes to further explore the potentials and identify the ideal operation scenarios of MVs. The results show that the innovative MV technology can save up to 52.0% in vehicle travel cost, 35.6% in passenger service time, and 29.4% in total cost against existing on-demand mobility services. Results suggest that MVs best benefit from platooning by serving enclave pairs as a hub-and-spoke service.

相關內容

Generative Adversarial Networks (GANs) have achieved state-of-the-art results in tabular data synthesis, under the presumption of direct accessible training data. Vertical Federated Learning (VFL) is a paradigm which allows to distributedly train machine learning model with clients possessing unique features pertaining to the same individuals, where the tabular data learning is the primary use case. However, it is unknown if tabular GANs can be learned in VFL. Demand for secure data transfer among clients and GAN during training and data synthesizing poses extra challenge. Conditional vector for tabular GANs is a valuable tool to control specific features of generated data. But it contains sensitive information from real data - risking privacy guarantees. In this paper, we propose GTV, a VFL framework for tabular GANs, whose key components are generator, discriminator and the conditional vector. GTV proposes an unique distributed training architecture for generator and discriminator to access training data in a privacy-preserving manner. To accommodate conditional vector into training without privacy leakage, GTV designs a mechanism training-with-shuffling to ensure that no party can reconstruct training data with conditional vector. We evaluate the effectiveness of GTV in terms of synthetic data quality, and overall training scalability. Results show that GTV can consistently generate high-fidelity synthetic tabular data of comparable quality to that generated by centralized GAN algorithm. The difference on machine learning utility can be as low as to 2.7%, even under extremely imbalanced data distributions across clients and different number of clients.

Traffic systems are multi-agent cyber-physical systems whose performance is closely related to human welfare. They work in open environments and are subject to uncertainties from various sources, making their performance hard to verify by traditional model-based approaches. Alternatively, statistical model checking (SMC) can verify their performance by sequentially drawing sample data until the correctness of a performance specification can be inferred with desired statistical accuracy. This work aims to verify traffic systems with privacy, motivated by the fact that the data used may include personal information (e.g., daily itinerary) and get leaked unintendedly by observing the execution of the SMC algorithm. To formally capture data privacy in SMC, we introduce the concept of expected differential privacy (EDP), which constrains how much the algorithm execution can change in the expectation sense when data change. Accordingly, we introduce an exponential randomization mechanism for the SMC algorithm to achieve the EDP. Our case study on traffic intersections by Vissim simulation shows the high accuracy of SMC in traffic model verification without significantly sacrificing computing efficiency. The case study also shows EDP successfully bounding the algorithm outputs to guarantee privacy.

This paper is about two things: (i) Charles Sanders Peirce (1837-1914) -- an iconoclastic philosopher and polymath who is among the greatest of American minds. (ii) Abductive inference -- a term coined by C. S. Peirce, which he defined as "the process of forming explanatory hypotheses. It is the only logical operation which introduces any new idea." Abductive inference and quantitative economics: Abductive inference plays a fundamental role in empirical scientific research as a tool for discovery and data analysis. Heckman and Singer (2017) strongly advocated "Economists should abduct." Arnold Zellner (2007) stressed that "much greater emphasis on reductive [abductive] inference in teaching econometrics, statistics, and economics would be desirable." But currently, there are no established theory or practical tools that can allow an empirical analyst to abduct. This paper attempts to fill this gap by introducing new principles and concrete procedures to the Economics and Statistics community. I termed the proposed approach as Abductive Inference Machine (AIM). The historical Peirce's experiment: In 1872, Peirce conducted a series of experiments to determine the distribution of response times to an auditory stimulus, which is widely regarded as one of the most significant statistical investigations in the history of nineteenth-century American mathematical research (Stigler, 1978). On the 150th anniversary of this historical experiment, we look back at the Peircean-style abductive inference through a modern statistical lens. Using Peirce's data, it is shown how empirical analysts can abduct in a systematic and automated manner using AIM.

Online meta-learning has recently emerged as a marriage between batch meta-learning and online learning, for achieving the capability of quick adaptation on new tasks in a lifelong manner. However, most existing approaches focus on the restrictive setting where the distribution of the online tasks remains fixed with known task boundaries. In this work, we relax these assumptions and propose a novel algorithm for task-agnostic online meta-learning in non-stationary environments. More specifically, we first propose two simple but effective detection mechanisms of task switches and distribution shift based on empirical observations, which serve as a key building block for more elegant online model updates in our algorithm: the task switch detection mechanism allows reusing of the best model available for the current task at hand, and the distribution shift detection mechanism differentiates the meta model update in order to preserve the knowledge for in-distribution tasks and quickly learn the new knowledge for out-of-distribution tasks. In particular, our online meta model updates are based only on the current data, which eliminates the need of storing previous data as required in most existing methods. We further show that a sublinear task-averaged regret can be achieved for our algorithm under mild conditions. Empirical studies on three different benchmarks clearly demonstrate the significant advantage of our algorithm over related baseline approaches.

Gradient Balancing (GraB) is a recently proposed technique that finds provably better data permutations when training models with multiple epochs over a finite dataset. It converges at a faster rate than the widely adopted Random Reshuffling, by minimizing the discrepancy of the gradients on adjacently selected examples. However, GraB only operates under critical assumptions such as small batch sizes and centralized data, leaving open the question of how to order examples at large scale -- i.e. distributed learning with decentralized data. To alleviate the limitation, in this paper we propose D-GraB that involves two novel designs: (1) $\textsf{PairBalance}$ that eliminates the requirement to use stale gradient mean in GraB which critically relies on small learning rates; (2) an ordering protocol that runs $\textsf{PairBalance}$ in a distributed environment with negligible overhead, which benefits from both data ordering and parallelism. We prove D-GraB enjoys linear speed up at rate $\tilde{O}((mnT)^{-2/3})$ on smooth non-convex objectives and $\tilde{O}((mnT)^{-2})$ under PL condition, where $n$ denotes the number of parallel workers, $m$ denotes the number of examples per worker and $T$ denotes the number of epochs. Empirically, we show on various applications including GLUE, CIFAR10 and WikiText-2 that D-GraB outperforms naive parallel GraB and Distributed Random Reshuffling in terms of both training and validation performance.

Probabilistic sensitivity analysis identifies the influential uncertain input to guide decision-making. We propose a general sensitivity framework with respect to the input distribution parameters that unifies a wide range of sensitivity measures, including information theoretical metrics such as the Fisher information. The framework is derived analytically via a constrained maximization and the sensitivity analysis is reformulated into an eigenvalue problem. There are only two main steps to implement the sensitivity framework utilising the likelihood ratio/score function method, a Monte Carlo type sampling followed by solving an eigenvalue equation. The resulting eigenvectors then provide the directions for simultaneous variations of the input parameters and guide the focus to perturb uncertainty the most. Not only is it conceptually simple, but numerical examples demonstrate that the proposed framework also provides new sensitivity insights, such as the combined sensitivity of multiple correlated uncertainty metrics, robust sensitivity analysis with an entropic constraint, and approximation of deterministic sensitivities. Three different examples, ranging from a simple cantilever beam to an offshore marine riser, are used to demonstrate the potential applications of the proposed sensitivity framework to applied mechanics problems.

Reasoning with knowledge expressed in natural language and Knowledge Bases (KBs) is a major challenge for Artificial Intelligence, with applications in machine reading, dialogue, and question answering. General neural architectures that jointly learn representations and transformations of text are very data-inefficient, and it is hard to analyse their reasoning process. These issues are addressed by end-to-end differentiable reasoning systems such as Neural Theorem Provers (NTPs), although they can only be used with small-scale symbolic KBs. In this paper we first propose Greedy NTPs (GNTPs), an extension to NTPs addressing their complexity and scalability limitations, thus making them applicable to real-world datasets. This result is achieved by dynamically constructing the computation graph of NTPs and including only the most promising proof paths during inference, thus obtaining orders of magnitude more efficient models. Then, we propose a novel approach for jointly reasoning over KBs and textual mentions, by embedding logic facts and natural language sentences in a shared embedding space. We show that GNTPs perform on par with NTPs at a fraction of their cost while achieving competitive link prediction results on large datasets, providing explanations for predictions, and inducing interpretable models. Source code, datasets, and supplementary material are available online at //github.com/uclnlp/gntp.

Graph Neural Networks (GNNs), which generalize deep neural networks to graph-structured data, have drawn considerable attention and achieved state-of-the-art performance in numerous graph related tasks. However, existing GNN models mainly focus on designing graph convolution operations. The graph pooling (or downsampling) operations, that play an important role in learning hierarchical representations, are usually overlooked. In this paper, we propose a novel graph pooling operator, called Hierarchical Graph Pooling with Structure Learning (HGP-SL), which can be integrated into various graph neural network architectures. HGP-SL incorporates graph pooling and structure learning into a unified module to generate hierarchical representations of graphs. More specifically, the graph pooling operation adaptively selects a subset of nodes to form an induced subgraph for the subsequent layers. To preserve the integrity of graph's topological information, we further introduce a structure learning mechanism to learn a refined graph structure for the pooled graph at each layer. By combining HGP-SL operator with graph neural networks, we perform graph level representation learning with focus on graph classification task. Experimental results on six widely used benchmarks demonstrate the effectiveness of our proposed model.

There is a recent large and growing interest in generative adversarial networks (GANs), which offer powerful features for generative modeling, density estimation, and energy function learning. GANs are difficult to train and evaluate but are capable of creating amazingly realistic, though synthetic, image data. Ideas stemming from GANs such as adversarial losses are creating research opportunities for other challenges such as domain adaptation. In this paper, we look at the field of GANs with emphasis on these areas of emerging research. To provide background for adversarial techniques, we survey the field of GANs, looking at the original formulation, training variants, evaluation methods, and extensions. Then we survey recent work on transfer learning, focusing on comparing different adversarial domain adaptation methods. Finally, we take a look forward to identify open research directions for GANs and domain adaptation, including some promising applications such as sensor-based human behavior modeling.

As a new classification platform, deep learning has recently received increasing attention from researchers and has been successfully applied to many domains. In some domains, like bioinformatics and robotics, it is very difficult to construct a large-scale well-annotated dataset due to the expense of data acquisition and costly annotation, which limits its development. Transfer learning relaxes the hypothesis that the training data must be independent and identically distributed (i.i.d.) with the test data, which motivates us to use transfer learning to solve the problem of insufficient training data. This survey focuses on reviewing the current researches of transfer learning by using deep neural network and its applications. We defined deep transfer learning, category and review the recent research works based on the techniques used in deep transfer learning.

北京阿比特科技有限公司