In this paper, we deal with bias mitigation techniques that remove specific data points from the training set to aim for a fair representation of the population in that set. Machine learning models are trained on these pre-processed datasets, and their predictions are expected to be fair. However, such approaches may exclude relevant data, making the attained subsets less trustworthy for further usage. To enhance the trustworthiness of prior methods, we propose additional requirements and objectives that the subsets must fulfill in addition to fairness: (1) group coverage, and (2) minimal data loss. While removing entire groups may improve the measured fairness, this practice is very problematic as failing to represent every group cannot be considered fair. In our second concern, we advocate for the retention of data while minimizing discrimination. By introducing a multi-objective optimization problem that considers fairness and data loss, we propose a methodology to find Pareto-optimal solutions that balance these objectives. By identifying such solutions, users can make informed decisions about the trade-off between fairness and data quality and select the most suitable subset for their application.
In this paper, we develop upon the emerging topic of loss function learning, which aims to learn loss functions that significantly improve the performance of the models trained under them. Specifically, we propose a new meta-learning framework for learning model-agnostic loss functions via a hybrid neuro-symbolic search approach. The framework first uses evolution-based methods to search the space of primitive mathematical operations to find a set of symbolic loss functions. Second, the set of learned loss functions are subsequently parameterized and optimized via an end-to-end gradient-based training procedure. The versatility of the proposed framework is empirically validated on a diverse set of supervised learning tasks. Results show that the meta-learned loss functions discovered by the newly proposed method outperform both the cross-entropy loss and state-of-the-art loss function learning methods on a diverse range of neural network architectures and datasets.
In this paper, we study the problem of uncertainty estimation and calibration for LLMs. We first formulate the uncertainty estimation problem for LLMs and then propose a supervised approach that takes advantage of the labeled datasets and estimates the uncertainty of the LLMs' responses. Based on the formulation, we illustrate the difference between the uncertainty estimation for LLMs and that for standard ML models and explain why the hidden neurons of the LLMs may contain uncertainty information. Our designed approach demonstrates the benefits of utilizing hidden activations to enhance uncertainty estimation across various tasks and shows robust transferability in out-of-distribution settings. We distinguish the uncertainty estimation task from the uncertainty calibration task and show that a better uncertainty estimation mode leads to a better calibration performance. Furthermore, our method is easy to implement and adaptable to different levels of model accessibility including black box, grey box, and white box.
Motivated by the pressing challenges in the digital twin development for biomanufacturing systems, we introduce an adjoint sensitivity analysis (SA) approach to expedite the learning of mechanistic model parameters. In this paper, we consider enzymatic stochastic reaction networks representing a multi-scale bioprocess mechanistic model that allows us to integrate disparate data from diverse production processes and leverage the information from existing macro-kinetic and genome-scale models. To support forward prediction and backward reasoning, we develop a convergent adjoint SA algorithm studying how the perturbations of model parameters and inputs (e.g., initial state) propagate through enzymatic reaction networks and impact on output trajectory predictions. This SA can provide a sample efficient and interpretable way to assess the sensitivities between inputs and outputs accounting for their causal dependencies. Our empirical study underscores the resilience of these sensitivities and illuminates a deeper comprehension of the regulatory mechanisms behind bioprocess through sensitivities.
In this paper, we propose a control algorithm based on reinforcement learning, employing independent rewards for each joint to control excavators in a 3D space. The aim of this research is to address the challenges associated with achieving precise control of excavators, which are extensively utilized in construction sites but prove challenging to control with precision due to their hydraulic structures. Traditional methods relied on operator expertise for precise excavator operation, occasionally resulting in safety accidents. Therefore, there have been endeavors to attain precise excavator control through equation-based control algorithms. However, these methods had the limitation of necessitating prior information related to physical values of the excavator, rendering them unsuitable for the diverse range of excavators used in the field. To overcome these limitations, we have explored reinforcement learning-based control methods that do not demand prior knowledge of specific equipment but instead utilize data to train models. Nevertheless, existing reinforcement learning-based methods overlooked cabin swing rotation and confined the bucket's workspace to a 2D plane. Control confined within such a limited area diminishes the applicability of the algorithm in construction sites. We address this issue by expanding the previous 2D plane workspace of the bucket operation into a 3D space, incorporating cabin swing rotation. By expanding the workspace into 3D, excavators can execute continuous operations without requiring human intervention. To accomplish this objective, distinct targets were established for each joint, facilitating the training of action values for each joint independently, regardless of the progress of other joint learning.
In this paper, we introduce a novel method for merging the weights of multiple pre-trained neural networks using a genetic algorithm called MeGA. Traditional techniques, such as weight averaging and ensemble methods, often fail to fully harness the capabilities of pre-trained networks. Our approach leverages a genetic algorithm with tournament selection, crossover, and mutation to optimize weight combinations, creating a more effective fusion. This technique allows the merged model to inherit advantageous features from both parent models, resulting in enhanced accuracy and robustness. Through experiments on the CIFAR-10 dataset, we demonstrate that our genetic algorithm-based weight merging method improves test accuracy compared to individual models and conventional methods. This approach provides a scalable solution for integrating multiple pre-trained networks across various deep learning applications. Github is available at: //github.com/YUNBLAK/MeGA-Merging-Multiple-Independently-Trained-Neural-Networks-Based-on-Genetic-Algorithm
In this paper, we propose a computationally efficient framework for interval reachability of systems with neural network controllers. Our approach leverages inclusion functions for the open-loop system and the neural network controller to embed the closed-loop system into a larger-dimensional embedding system, where a single trajectory over-approximates the original system's behavior under uncertainty. We propose two methods for constructing closed-loop embedding systems, which account for the interactions between the system and the controller in different ways. The interconnection-based approach considers the worst-case evolution of each coordinate separately by substituting the neural network inclusion function into the open-loop inclusion function. The interaction-based approach uses novel Jacobian-based inclusion functions to capture the first-order interactions between the open-loop system and the controller by leveraging state-of-the-art neural network verifiers. Finally, we implement our approach in a Python framework called ReachMM to demonstrate its efficiency and scalability on benchmarks and examples ranging to $200$ state dimensions.
Transformers have achieved superior performances in many tasks in natural language processing and computer vision, which also intrigues great interests in the time series community. Among multiple advantages of transformers, the ability to capture long-range dependencies and interactions is especially attractive for time series modeling, leading to exciting progress in various time series applications. In this paper, we systematically review transformer schemes for time series modeling by highlighting their strengths as well as limitations through a new taxonomy to summarize existing time series transformers in two perspectives. From the perspective of network modifications, we summarize the adaptations of module level and architecture level of the time series transformers. From the perspective of applications, we categorize time series transformers based on common tasks including forecasting, anomaly detection, and classification. Empirically, we perform robust analysis, model size analysis, and seasonal-trend decomposition analysis to study how Transformers perform in time series. Finally, we discuss and suggest future directions to provide useful research guidance. To the best of our knowledge, this paper is the first work to comprehensively and systematically summarize the recent advances of Transformers for modeling time series data. We hope this survey will ignite further research interests in time series Transformers.
Link prediction is a very fundamental task on graphs. Inspired by traditional path-based methods, in this paper we propose a general and flexible representation learning framework based on paths for link prediction. Specifically, we define the representation of a pair of nodes as the generalized sum of all path representations, with each path representation as the generalized product of the edge representations in the path. Motivated by the Bellman-Ford algorithm for solving the shortest path problem, we show that the proposed path formulation can be efficiently solved by the generalized Bellman-Ford algorithm. To further improve the capacity of the path formulation, we propose the Neural Bellman-Ford Network (NBFNet), a general graph neural network framework that solves the path formulation with learned operators in the generalized Bellman-Ford algorithm. The NBFNet parameterizes the generalized Bellman-Ford algorithm with 3 neural components, namely INDICATOR, MESSAGE and AGGREGATE functions, which corresponds to the boundary condition, multiplication operator, and summation operator respectively. The NBFNet is very general, covers many traditional path-based methods, and can be applied to both homogeneous graphs and multi-relational graphs (e.g., knowledge graphs) in both transductive and inductive settings. Experiments on both homogeneous graphs and knowledge graphs show that the proposed NBFNet outperforms existing methods by a large margin in both transductive and inductive settings, achieving new state-of-the-art results.
In this paper, we present a comprehensive review of the imbalance problems in object detection. To analyze the problems in a systematic manner, we introduce a problem-based taxonomy. Following this taxonomy, we discuss each problem in depth and present a unifying yet critical perspective on the solutions in the literature. In addition, we identify major open issues regarding the existing imbalance problems as well as imbalance problems that have not been discussed before. Moreover, in order to keep our review up to date, we provide an accompanying webpage which catalogs papers addressing imbalance problems, according to our problem-based taxonomy. Researchers can track newer studies on this webpage available at: //github.com/kemaloksuz/ObjectDetectionImbalance .
Machine learning techniques have deeply rooted in our everyday life. However, since it is knowledge- and labor-intensive to pursue good learning performance, human experts are heavily involved in every aspect of machine learning. In order to make machine learning techniques easier to apply and reduce the demand for experienced human experts, automated machine learning (AutoML) has emerged as a hot topic with both industrial and academic interest. In this paper, we provide an up to date survey on AutoML. First, we introduce and define the AutoML problem, with inspiration from both realms of automation and machine learning. Then, we propose a general AutoML framework that not only covers most existing approaches to date but also can guide the design for new methods. Subsequently, we categorize and review the existing works from two aspects, i.e., the problem setup and the employed techniques. Finally, we provide a detailed analysis of AutoML approaches and explain the reasons underneath their successful applications. We hope this survey can serve as not only an insightful guideline for AutoML beginners but also an inspiration for future research.