亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A recent line of work has shown remarkable behaviors of the generalization error curves in simple learning models. Even the least-squares regression has shown atypical features such as the model-wise double descent, and further works have observed triple or multiple descents. Another important characteristic are the epoch-wise descent structures which emerge during training. The observations of model-wise and epoch-wise descents have been analytically derived in limited theoretical settings (such as the random feature model) and are otherwise experimental. In this work, we provide a full and unified analysis of the whole time-evolution of the generalization curve, in the asymptotic large-dimensional regime and under gradient-flow, within a wider theoretical setting stemming from a gaussian covariate model. In particular, we cover most cases already disparately observed in the literature, and also provide examples of the existence of multiple descent structures as a function of a model parameter or time. Furthermore, we show that our theoretical predictions adequately match the learning curves obtained by gradient descent over realistic datasets. Technically we compute averages of rational expressions involving random matrices using recent developments in random matrix theory based on "linear pencils". Another contribution, which is also of independent interest in random matrix theory, is a new derivation of related fixed point equations (and an extension there-off) using Dyson brownian motions.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 主動學習 · Extensibility · 講稿 · INFORMS ·
2023 年 2 月 15 日

In deep active learning, it is especially important to choose multiple examples to markup at each step to work efficiently, especially on large datasets. At the same time, existing solutions to this problem in the Bayesian setup, such as BatchBALD, have significant limitations in selecting a large number of examples, associated with the exponential complexity of computing mutual information for joint random variables. We, therefore, present the Large BatchBALD algorithm, which gives a well-grounded approximation to the BatchBALD method that aims to achieve comparable quality while being more computationally efficient. We provide a complexity analysis of the algorithm, showing a reduction in computation time, especially for large batches. Furthermore, we present an extensive set of experimental results on image and text data, both on toy datasets and larger ones such as CIFAR-100.

We develop a novel full-Bayesian approach for multiple correlated precision matrices, called multiple Graphical Horseshoe (mGHS). The proposed approach relies on a novel multivariate shrinkage prior based on the Horseshoe prior that borrows strength and shares sparsity patterns across groups, improving posterior edge selection when the precision matrices are similar. On the other hand, there is no loss of performance when the groups are independent. Moreover, mGHS provides a similarity matrix estimate, useful for understanding network similarities across groups. We implement an efficient Metropolis-within-Gibbs for posterior inference; specifically, local variance parameters are updated via a novel and efficient modified rejection sampling algorithm that samples from a three-parameter Gamma distribution. The method scales well with respect to the number of variables and provides one of the fastest full-Bayesian approaches for the estimation of multiple precision matrices. Finally, edge selection is performed with a novel approach based on model cuts. We empirically demonstrate that mGHS outperforms competing approaches through both simulation studies and an application to a bike-sharing dataset.

In this work, we advocate for the importance of singular learning theory (SLT) as it pertains to the theory and practice of variational inference in Bayesian neural networks (BNNs). To begin, using SLT, we lay to rest some of the confusion surrounding discrepancies between downstream predictive performance measured via e.g., the test log predictive density, and the variational objective. Next, we use the SLT-corrected asymptotic form for singular posterior distributions to inform the design of the variational family itself. Specifically, we build upon the idealized variational family introduced in \citet{bhattacharya_evidence_2020} which is theoretically appealing but practically intractable. Our proposal takes shape as a normalizing flow where the base distribution is a carefully-initialized generalized gamma. We conduct experiments comparing this to the canonical Gaussian base distribution and show improvements in terms of variational free energy and variational generalization error.

Bayesian inference problems require sampling or approximating high-dimensional probability distributions. The focus of this paper is on the recently introduced Stein variational gradient descent methodology, a class of algorithms that rely on iterated steepest descent steps with respect to a reproducing kernel Hilbert space norm. This construction leads to interacting particle systems, the mean-field limit of which is a gradient flow on the space of probability distributions equipped with a certain geometrical structure. We leverage this viewpoint to shed some light on the convergence properties of the algorithm, in particular addressing the problem of choosing a suitable positive definite kernel function. Our analysis leads us to considering certain nondifferentiable kernels with adjusted tails. We demonstrate significant performance gains of these in various numerical experiments.

Modern longitudinal studies collect multiple outcomes as the primary endpoints to understand the complex dynamics of the diseases. Oftentimes, especially in clinical trials, the joint variations among the multidimensional responses play a significant role in assessing the differential characteristics between two or more groups, rather than drawing inferences based on a single outcome. Enclosing the longitudinal design under the umbrella of sparsely observed functional data, we develop a projection-based two-sample significance test to identify the difference between the typical multivariate profiles. The methodology is built upon widely adopted multivariate functional principal component analysis to reduce the dimension of the infinite-dimensional multi-modal functions while preserving the dynamic correlation between the components. The test is applicable to a wide class of (non-stationary) covariance structures of the response, and it detects a significant group difference based on a single p-value, thereby overcoming the issue of adjusting for multiple p-values that arises due to comparing the means in each of components separately. Finite-sample numerical studies demonstrate that the test maintains the type-I error, and is powerful to detect significant group differences, compared to the state-of-the-art testing procedures. The test is carried out on the longitudinally designed TOMMORROW study of individuals at high risk of mild cognitive impairment due to Alzheimer's disease to detect differences in the cognitive test scores between the pioglitazone and the placebo groups.

Explainable machine learning provides tools to better understand predictive models and their decisions, but many such methods are limited to producing insights with respect to a single class. When generating explanations for several classes, reasoning over them to obtain a complete view may be difficult since they can present competing or contradictory evidence. To address this issue we introduce a novel paradigm of multi-class explanations. We outline the theory behind such techniques and propose a local surrogate model based on multi-output regression trees -- called LIMEtree -- which offers faithful and consistent explanations of multiple classes for individual predictions while being post-hoc, model-agnostic and data-universal. In addition to strong fidelity guarantees, our implementation supports (interactive) customisation of the explanatory insights and delivers a range of diverse explanation types, including counterfactual statements favoured in the literature. We evaluate our algorithm with a collection of quantitative experiments, a qualitative analysis based on explainability desiderata and a preliminary user study on an image classification task, comparing it to LIME. Our contributions demonstrate the benefits of multi-class explanations and wide-ranging advantages of our method across a diverse set scenarios.

Sampling from an unnormalized target distribution is an essential problem with many applications in probabilistic inference. Stein Variational Gradient Descent (SVGD) has been shown to be a powerful method that iteratively updates a set of particles to approximate the distribution of interest. Furthermore, when analysing its asymptotic properties, SVGD reduces exactly to a single-objective optimization problem and can be viewed as a probabilistic version of this single-objective optimization problem. A natural question then arises: "Can we derive a probabilistic version of the multi-objective optimization?". To answer this question, we propose Stochastic Multiple Target Sampling Gradient Descent (MT-SGD), enabling us to sample from multiple unnormalized target distributions. Specifically, our MT-SGD conducts a flow of intermediate distributions gradually orienting to multiple target distributions, which allows the sampled particles to move to the joint high-likelihood region of the target distributions. Interestingly, the asymptotic analysis shows that our approach reduces exactly to the multiple-gradient descent algorithm for multi-objective optimization, as expected. Finally, we conduct comprehensive experiments to demonstrate the merit of our approach to multi-task learning.

In this work we consider stochastic gradient descent (SGD) for solving linear inverse problems in Banach spaces. SGD and its variants have been established as one of the most successful optimisation methods in machine learning, imaging and signal processing, etc. At each iteration SGD uses a single datum, or a small subset of data, resulting in highly scalable methods that are very attractive for large-scale inverse problems. Nonetheless, the theoretical analysis of SGD-based approaches for inverse problems has thus far been largely limited to Euclidean and Hilbert spaces. In this work we present a novel convergence analysis of SGD for linear inverse problems in general Banach spaces: we show the almost sure convergence of the iterates to the minimum norm solution and establish the regularising property for suitable a priori stopping criteria. Numerical results are also presented to illustrate features of the approach.

Self-supervised learning has been widely used to obtain transferrable representations from unlabeled images. Especially, recent contrastive learning methods have shown impressive performances on downstream image classification tasks. While these contrastive methods mainly focus on generating invariant global representations at the image-level under semantic-preserving transformations, they are prone to overlook spatial consistency of local representations and therefore have a limitation in pretraining for localization tasks such as object detection and instance segmentation. Moreover, aggressively cropped views used in existing contrastive methods can minimize representation distances between the semantically different regions of a single image. In this paper, we propose a spatially consistent representation learning algorithm (SCRL) for multi-object and location-specific tasks. In particular, we devise a novel self-supervised objective that tries to produce coherent spatial representations of a randomly cropped local region according to geometric translations and zooming operations. On various downstream localization tasks with benchmark datasets, the proposed SCRL shows significant performance improvements over the image-level supervised pretraining as well as the state-of-the-art self-supervised learning methods.

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

北京阿比特科技有限公司