亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper presents an efficient algorithm for the approximation of the rank-one convex hull in the context of nonlinear solid mechanics. It is based on hierarchical rank-one sequences and simultaneously provides first and second derivative information essential for the calculation of mechanical stresses and the computational minimization of discretized energies. For materials, whose microstructure can be well approximated in terms of laminates and where each laminate stage achieves energetic optimality with respect to the current stage, the approximate envelope coincides with the rank-one convex envelope. Although the proposed method provides only an upper bound for the rank-one convex hull, a careful examination of the resulting constraints shows a decent applicability in mechanical problems. Various aspects of the algorithm are discussed, including the restoration of rotational invariance, microstructure reconstruction, comparisons with other semi-convexification algorithms, and mesh independency. Overall, this paper demonstrates the efficiency of the algorithm for both, well-established mathematical benchmark problems as well as nonconvex isotropic finite-strain continuum damage models in two and three dimensions. Thereby, for the first time, a feasible concurrent numerical relaxation is established for an incremental, dissipative large-strain model with relevant applications in engineering problems.

相關內容

In this paper, we derive distributional convergence rates for the magnetization vector and the maximum pseudolikelihood estimator of the inverse temperature parameter in the tensor Curie-Weiss Potts model. Limit theorems for the magnetization vector have been derived recently in Bhowal and Mukherjee (2023), where several phase transition phenomena in terms of the scaling of the (centered) magnetization and its asymptotic distribution were established, depending upon the position of the true parameters in the parameter space. In the current work, we establish Berry-Esseen type results for the magnetization vector, specifying its rate of convergence at these different phases. At most points in the parameter space, this rate is $N^{-1/2}$ ($N$ being the size of the Curie-Weiss network), while at some "special" points, the rate is either $N^{-1/4}$ or $N^{-1/6}$, depending upon the behavior of the fourth derivative of a certain "negative free energy function" at these special points. These results are then used to derive Berry-Esseen type bounds for the maximum pseudolikelihood estimator of the inverse temperature parameter whenever it lies above a certain criticality threshold.

Quantum low-density parity-check (qLDPC) codes offer a promising route to scalable fault-tolerant quantum computation with constant overhead. Recent advancements have shown that qLDPC codes can outperform the quantum memory capability of surface codes even with near-term hardware. The question of how to implement logical gates fault-tolerantly for these codes is still open. We present new examples of high-rate bivariate bicycle (BB) codes with enhanced symmetry properties. These codes feature explicit nice bases of logical operators (similar to toric codes) and support fold-transversal Clifford gates without overhead. As examples, we construct $[[98,6,12]]$ and $[[162, 8, 12]]$ BB codes which admit interesting fault-tolerant Clifford gates. Our work also lays the mathematical foundations for explicit bases of logical operators and fold-transversal gates in quantum two-block and group algebra codes, which might be of independent interest.

Evaluating the generalisation capabilities of multimodal models based solely on their performance on out-of-distribution data fails to capture their true robustness. This work introduces a comprehensive evaluation framework that systematically examines the role of instructions and inputs in the generalisation abilities of such models, considering architectural design, input perturbations across language and vision modalities, and increased task complexity. The proposed framework uncovers the resilience of multimodal models to extreme instruction perturbations and their vulnerability to observational changes, raising concerns about overfitting to spurious correlations. By employing this evaluation framework on current Transformer-based multimodal models for robotic manipulation tasks, we uncover limitations and suggest future advancements should focus on architectural and training innovations that better integrate multimodal inputs, enhancing a model's generalisation prowess by prioritising sensitivity to input content over incidental correlations.

Many organizations use algorithms that have a disparate impact, i.e., the benefits or harms of the algorithm fall disproportionately on certain social groups. Addressing an algorithm's disparate impact can be challenging, however, because it is often unclear whether it is possible to reduce this impact without sacrificing other objectives of the organization, such as accuracy or profit. Establishing the improvability of algorithms with respect to multiple criteria is of both conceptual and practical interest: in many settings, disparate impact that would otherwise be prohibited under US federal law is permissible if it is necessary to achieve a legitimate business interest. The question is how a policy-maker can formally substantiate, or refute, this "necessity" defense. In this paper, we provide an econometric framework for testing the hypothesis that it is possible to improve on the fairness of an algorithm without compromising on other pre-specified objectives. Our proposed test is simple to implement and can be applied under any exogenous constraint on the algorithm space. We establish the large-sample validity and consistency of our test, and illustrate its practical application by evaluating a healthcare algorithm originally considered by Obermeyer et al. (2019). In this application, we reject the null hypothesis that it is not possible to reduce the algorithm's disparate impact without compromising the accuracy of its predictions.

A vertex exchange method is proposed for solving the strongly convex quadratic program subject to the generalized simplex constraint. We conduct rigorous convergence analysis for the proposed algorithm and demonstrate its essential roles in solving some important classes of constrained convex optimization. To get a feasible initial point to execute the algorithm, we also present and analyze a highly efficient semismooth Newton method for computing the projection onto the generalized simplex. The excellent practical performance of the proposed algorithms is demonstrated by a set of extensive numerical experiments. Our theoretical and numerical results further motivate the potential applications of the considered model and the proposed algorithms.

This paper addresses the challenge of solving large-scale nonlinear equations with H\"older continuous Jacobians. We introduce a novel Incremental Gauss--Newton (IGN) method within explicit superlinear convergence rate, which outperforms existing methods that only achieve linear convergence rate. In particular, we formulate our problem by the nonlinear least squares with finite-sum structure, and our method incrementally iterates with the information of one component in each round. We also provide a mini-batch extension to our IGN method that obtains an even faster superlinear convergence rate. Furthermore, we conduct numerical experiments to show the advantages of the proposed methods.

We conduct a systematic study of the approximation properties of Transformer for sequence modeling with long, sparse and complicated memory. We investigate the mechanisms through which different components of Transformer, such as the dot-product self-attention, positional encoding and feed-forward layer, affect its expressive power, and we study their combined effects through establishing explicit approximation rates. Our study reveals the roles of critical parameters in the Transformer, such as the number of layers and the number of attention heads. These theoretical insights are validated experimentally and offer natural suggestions for alternative architectures.

Reasoning, a crucial ability for complex problem-solving, plays a pivotal role in various real-world settings such as negotiation, medical diagnosis, and criminal investigation. It serves as a fundamental methodology in the field of Artificial General Intelligence (AGI). With the ongoing development of foundation models, e.g., Large Language Models (LLMs), there is a growing interest in exploring their abilities in reasoning tasks. In this paper, we introduce seminal foundation models proposed or adaptable for reasoning, highlighting the latest advancements in various reasoning tasks, methods, and benchmarks. We then delve into the potential future directions behind the emergence of reasoning abilities within foundation models. We also discuss the relevance of multimodal learning, autonomous agents, and super alignment in the context of reasoning. By discussing these future research directions, we hope to inspire researchers in their exploration of this field, stimulate further advancements in reasoning with foundation models, and contribute to the development of AGI.

Knowledge graph reasoning (KGR), aiming to deduce new facts from existing facts based on mined logic rules underlying knowledge graphs (KGs), has become a fast-growing research direction. It has been proven to significantly benefit the usage of KGs in many AI applications, such as question answering and recommendation systems, etc. According to the graph types, the existing KGR models can be roughly divided into three categories, \textit{i.e.,} static models, temporal models, and multi-modal models. The early works in this domain mainly focus on static KGR and tend to directly apply general knowledge graph embedding models to the reasoning task. However, these models are not suitable for more complex but practical tasks, such as inductive static KGR, temporal KGR, and multi-modal KGR. To this end, multiple works have been developed recently, but no survey papers and open-source repositories comprehensively summarize and discuss models in this important direction. To fill the gap, we conduct a survey for knowledge graph reasoning tracing from static to temporal and then to multi-modal KGs. Concretely, the preliminaries, summaries of KGR models, and typical datasets are introduced and discussed consequently. Moreover, we discuss the challenges and potential opportunities. The corresponding open-source repository is shared on GitHub: //github.com/LIANGKE23/Awesome-Knowledge-Graph-Reasoning.

As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.

北京阿比特科技有限公司