亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Researchers have explored the performance of Iterated Prisoner's Dilemma strategies for decades, from the celebrated performance of Tit for Tat to the introduction of the zero-determinant strategies and the use of sophisticated learning structures such as neural networks. Many new strategies have been introduced and tested in a variety of tournaments and population dynamics. Typical results in the literature, however, rely on performance against a small number of somewhat arbitrarily selected strategies in a small number of tournaments, casting doubt on the generalizability of conclusions. In this work, we analyze a large collection of 195 strategies in thousands of computer tournaments, present the top performing strategies across multiple tournament types, and distill their salient features. The results show that there is not yet a single strategy that performs well in diverse Iterated Prisoner's Dilemma scenarios, nevertheless there are several properties that heavily influence the best performing strategies. This refines the properties described by Axelrod in light of recent and more diverse opponent populations to: be nice, be provocable and generous, be a little envious, be clever, and adapt to the environment. More precisely, we find that strategies perform best when their probability of cooperation matches the total tournament population's aggregate cooperation probabilities. The features of high performing strategies help cast some light on why strategies such as Tit For Tat performed historically well in tournaments and why zero-determinant strategies typically do not fare well in tournament settings. Furthermore, our findings have implications for the future training of autonomous agents, as understanding the crucial features for incorporation into these agents becomes essential.

相關內容

Court View Generation (CVG) is a challenging task in the field of Legal Artificial Intelligence (LegalAI), which aims to generate court views based on the plaintiff claims and the fact descriptions. While Pretrained Language Models (PLMs) have showcased their prowess in natural language generation, their application to the complex, knowledge-intensive domain of CVG often reveals inherent limitations. In this paper, we present a novel approach, named Knowledge Injection and Guidance (KIG), designed to bolster CVG using PLMs. To efficiently incorporate domain knowledge during the training stage, we introduce a knowledge-injected prompt encoder for prompt tuning, thereby reducing computational overhead. Moreover, to further enhance the model's ability to utilize domain knowledge, we employ a generating navigator, which dynamically guides the text generation process in the inference stage without altering the model's architecture, making it readily transferable. Comprehensive experiments on real-world data demonstrate the effectiveness of our approach compared to several established baselines, especially in the responsivity of claims, where it outperforms the best baseline by 11.87%.

Typologically diverse benchmarks are increasingly created to track the progress achieved in multilingual NLP. Linguistic diversity of these data sets is typically measured as the number of languages or language families included in the sample, but such measures do not consider structural properties of the included languages. In this paper, we propose assessing linguistic diversity of a data set against a reference language sample as a means of maximising linguistic diversity in the long run. We represent languages as sets of features and apply a version of the Jaccard index suitable for comparing sets of measures. In addition to the features extracted from typological data bases, we propose an automatic text-based measure, which can be used as a means of overcoming the well-known problem of data sparsity in manually collected features. Our diversity score is interpretable in terms of linguistic features and can identify the types of languages that are not represented in a data set. Using our method, we analyse a range of popular multilingual data sets (UD, Bible100, mBERT, XTREME, XGLUE, XNLI, XCOPA, TyDiQA, XQuAD). In addition to ranking these data sets, we find, for example, that (poly)synthetic languages are missing in almost all of them.

This paper describes the deployment and experimentation architecture of the Internet of Things experimentation facility being deployed at Santander city. The facility is implemented within the SmartSantander project, one of the projects of the Future Internet Research and Experimentation initiative of the European Commission and represents a unique in the world city-scale experimental research facility. Additionally, this facility supports typical applications and services of a smart city. Tangible results are expected to influence the definition and specification of Future Internet architecture design from viewpoints of Internet of Things and Internet of Services. The facility comprises a large number of Internet of Things devices deployed in several urban scenarios which will be federated into a single testbed. In this paper the deployment being carried out at the main location, namely Santander city, is described. Besides presenting the current deployment, in this article the main insights in terms of the architectural design of a large-scale IoT testbed are presented as well. Furthermore, solutions adopted for implementation of the different components addressing the required testbed functionalities are also sketched out. The IoT experimentation facility described in this paper is conceived to provide a suitable platform for large scale experimentation and evaluation of IoT concepts under real-life conditions.

Despite the many advances of Large Language Models (LLMs) and their unprecedented rapid evolution, their impact and integration into every facet of our daily lives is limited due to various reasons. One critical factor hindering their widespread adoption is the occurrence of hallucinations, where LLMs invent answers that sound realistic, yet drift away from factual truth. In this paper, we present a novel method for detecting hallucinations in large language models, which tackles a critical issue in the adoption of these models in various real-world scenarios. Through extensive evaluations across multiple datasets and LLMs, including Llama-2, we study the hallucination levels of various recent LLMs and demonstrate the effectiveness of our method to automatically detect them. Notably, we observe up to 62% hallucinations for Llama-2 in a specific experiment, where our method achieves a Balanced Accuracy (B-ACC) of 87%, all without relying on external knowledge.

Efficiently pricing multi-asset options poses a significant challenge in quantitative finance. The Monte Carlo (MC) method remains the prevalent choice for pricing engines; however, its slow convergence rate impedes its practical application. Fourier methods leverage the knowledge of the characteristic function to accurately and rapidly value options with up to two assets. Nevertheless, they face hurdles in the high-dimensional settings due to the tensor product (TP) structure of commonly employed quadrature techniques. This work advocates using the randomized quasi-MC (RQMC) quadrature to improve the scalability of Fourier methods with high dimensions. The RQMC technique benefits from the smoothness of the integrand and alleviates the curse of dimensionality while providing practical error estimates. Nonetheless, the applicability of RQMC on the unbounded domain, $\mathbb{R}^d$, requires a domain transformation to $[0,1]^d$, which may result in singularities of the transformed integrand at the corners of the hypercube, and deteriorate the rate of convergence of RQMC. To circumvent this difficulty, we design an efficient domain transformation procedure based on the derived boundary growth conditions of the integrand. This transformation preserves the sufficient regularity of the integrand and hence improves the rate of convergence of RQMC. To validate this analysis, we demonstrate the efficiency of employing RQMC with an appropriate transformation to evaluate options in the Fourier space for various pricing models, payoffs, and dimensions. Finally, we highlight the computational advantage of applying RQMC over MC or TP in the Fourier domain, and over MC in the physical domain for options with up to 15 assets.

The extropy measure, introduced by Lad, Sanfilippo, and Agro in their (2015) paper in Statistical Science, has garnered significant interest over the past years. In this study, we present a novel representation for the weighted extropy within the context of extreme ranked set sampling. Additionally, we offer related findings such as stochastic orders, characterizations, and precise bounds. Our results shed light onthe comparison between the weighted extropy of extreme ranked set sampling and its counterpart in simple random sampling.

Diffusion Probabilistic Models (DPMs) have achieved considerable success in generation tasks. As sampling from DPMs is equivalent to solving diffusion SDE or ODE which is time-consuming, numerous fast sampling methods built upon improved differential equation solvers are proposed. The majority of such techniques consider solving the diffusion ODE due to its superior efficiency. However, stochastic sampling could offer additional advantages in generating diverse and high-quality data. In this work, we engage in a comprehensive analysis of stochastic sampling from two aspects: variance-controlled diffusion SDE and linear multi-step SDE solver. Based on our analysis, we propose SA-Solver, which is an improved efficient stochastic Adams method for solving diffusion SDE to generate data with high quality. Our experiments show that SA-Solver achieves: 1) improved or comparable performance compared with the existing state-of-the-art sampling methods for few-step sampling; 2) SOTA FID scores on substantial benchmark datasets under a suitable number of function evaluations (NFEs).

With the escalating threats posed by cyberattacks on Industrial Control Systems (ICSs), the development of customized Industrial Intrusion Detection Systems (IIDSs) received significant attention in research. While existing literature proposes effective IIDS solutions evaluated in controlled environments, their deployment in real-world industrial settings poses several challenges. This paper highlights two critical yet often overlooked aspects that significantly impact their practical deployment, i.e., the need for sufficient amounts of data to train the IIDS models and the challenges associated with finding suitable hyperparameters, especially for IIDSs training only on genuine ICS data. Through empirical experiments conducted on multiple state-of-the-art IIDSs and diverse datasets, we establish the criticality of these issues in deploying IIDSs. Our findings show the necessity of extensive malicious training data for supervised IIDSs, which can be impractical considering the complexity of recording and labeling attacks in actual industrial environments. Furthermore, while other IIDSs circumvent the previous issue by requiring only benign training data, these can suffer from the difficulty of setting appropriate hyperparameters, which likewise can diminish their performance. By shedding light on these challenges, we aim to enhance the understanding of the limitations and considerations necessary for deploying effective cybersecurity solutions in ICSs, which might be one reason why IIDSs see few deployments.

Reasoning, a crucial ability for complex problem-solving, plays a pivotal role in various real-world settings such as negotiation, medical diagnosis, and criminal investigation. It serves as a fundamental methodology in the field of Artificial General Intelligence (AGI). With the ongoing development of foundation models, e.g., Large Language Models (LLMs), there is a growing interest in exploring their abilities in reasoning tasks. In this paper, we introduce seminal foundation models proposed or adaptable for reasoning, highlighting the latest advancements in various reasoning tasks, methods, and benchmarks. We then delve into the potential future directions behind the emergence of reasoning abilities within foundation models. We also discuss the relevance of multimodal learning, autonomous agents, and super alignment in the context of reasoning. By discussing these future research directions, we hope to inspire researchers in their exploration of this field, stimulate further advancements in reasoning with foundation models, and contribute to the development of AGI.

Deep Convolutional Neural Networks (CNNs) are a special type of Neural Networks, which have shown state-of-the-art results on various competitive benchmarks. The powerful learning ability of deep CNN is largely achieved with the use of multiple non-linear feature extraction stages that can automatically learn hierarchical representation from the data. Availability of a large amount of data and improvements in the hardware processing units have accelerated the research in CNNs and recently very interesting deep CNN architectures are reported. The recent race in deep CNN architectures for achieving high performance on the challenging benchmarks has shown that the innovative architectural ideas, as well as parameter optimization, can improve the CNN performance on various vision-related tasks. In this regard, different ideas in the CNN design have been explored such as use of different activation and loss functions, parameter optimization, regularization, and restructuring of processing units. However, the major improvement in representational capacity is achieved by the restructuring of the processing units. Especially, the idea of using a block as a structural unit instead of a layer is gaining substantial appreciation. This survey thus focuses on the intrinsic taxonomy present in the recently reported CNN architectures and consequently, classifies the recent innovations in CNN architectures into seven different categories. These seven categories are based on spatial exploitation, depth, multi-path, width, feature map exploitation, channel boosting and attention. Additionally, it covers the elementary understanding of the CNN components and sheds light on the current challenges and applications of CNNs.

北京阿比特科技有限公司