Despite their unprecedented success, DNNs are notoriously fragile to small shifts in data distribution, demanding effective testing techniques that can assess their dependability. Despite recent advances in DNN testing, there is a lack of systematic testing approaches that assess the DNN's capability to generalise and operate comparably beyond data in their training distribution. We address this gap with DeepKnowledge, a systematic testing methodology for DNN-based systems founded on the theory of knowledge generalisation, which aims to enhance DNN robustness and reduce the residual risk of 'black box' models. Conforming to this theory, DeepKnowledge posits that core computational DNN units, termed Transfer Knowledge neurons, can generalise under domain shift. DeepKnowledge provides an objective confidence measurement on testing activities of DNN given data distribution shifts and uses this information to instrument a generalisation-informed test adequacy criterion to check the transfer knowledge capacity of a test set. Our empirical evaluation of several DNNs, across multiple datasets and state-of-the-art adversarial generation techniques demonstrates the usefulness and effectiveness of DeepKnowledge and its ability to support the engineering of more dependable DNNs. We report improvements of up to 10 percentage points over state-of-the-art coverage criteria for detecting adversarial attacks on several benchmarks, including MNIST, SVHN, and CIFAR.
Collaborative filtering (CF) methods for recommendation systems have been extensively researched, ranging from matrix factorization and autoencoder-based to graph filtering-based methods. Recently, lightweight methods that require almost no training have been recently proposed to reduce overall computation. However, existing methods still have room to improve the trade-offs among accuracy, efficiency, and robustness. In particular, there are no well-designed closed-form studies for \emph{balanced} CF in terms of the aforementioned trade-offs. In this paper, we design SVD-AE, a simple yet effective singular vector decomposition (SVD)-based linear autoencoder, whose closed-form solution can be defined based on SVD for CF. SVD-AE does not require iterative training processes as its closed-form solution can be calculated at once. Furthermore, given the noisy nature of the rating matrix, we explore the robustness against such noisy interactions of existing CF methods and our SVD-AE. As a result, we demonstrate that our simple design choice based on truncated SVD can be used to strengthen the noise robustness of the recommendation while improving efficiency. Code is available at //github.com/seoyoungh/svd-ae.
Algorithms operating on real numbers are implemented as floating-point computations in practice, but floating-point operations introduce roundoff errors that can degrade the accuracy of the result. We propose $\Lambda_{num}$, a functional programming language with a type system that can express quantitative bounds on roundoff error. Our type system combines a sensitivity analysis, enforced through a linear typing discipline, with a novel graded monad to track the accumulation of roundoff errors. We prove that our type system is sound by relating the denotational semantics of our language to the exact and floating-point operational semantics. To demonstrate our system, we instantiate $\Lambda_{num}$ with error metrics proposed in the numerical analysis literature and we show how to incorporate rounding operations that faithfully model aspects of the IEEE 754 floating-point standard. To show that $\Lambda_{num}$ can be a useful tool for automated error analysis, we develop a prototype implementation for $\Lambda_{num}$ that infers error bounds that are competitive with existing tools, while often running significantly faster. Finally, we consider semantic extensions of our graded monad to bound error under more complex rounding behaviors, such as non-deterministic and randomized rounding.
Integrable partial differential equation (PDE) systems are of great interest in natural science, but are exceedingly rare and difficult to discover. To solve this, we introduce OptPDE, a first-of-its-kind machine learning approach that Optimizes PDEs' coefficients to maximize their number of conserved quantities, $n_{\rm CQ}$, and thus discover new integrable systems. We discover four families of integrable PDEs, one of which was previously known, and three of which have at least one conserved quantity but are new to the literature to the best of our knowledge. We investigate more deeply the properties of one of these novel PDE families, $u_t = (u_x+a^2u_{xxx})^3$. Our paper offers a promising schema of AI-human collaboration for integrable system discovery: machine learning generates interpretable hypotheses for possible integrable systems, which human scientists can verify and analyze, to truly close the discovery loop.
Contemporary accelerator designs exhibit a high degree of spatial localization, wherein two-dimensional physical distance determines communication costs between processing elements. This situation presents considerable algorithmic challenges, particularly when managing sparse data, a pivotal component in progressing data science. The spatial computer model quantifies communication locality by weighting processor communication costs by distance, introducing a term named energy. Moreover, it integrates depth, a widely-utilized metric, to promote high parallelism. We propose and analyze a framework for efficient spatial tree algorithms within the spatial computer model. Our primary method constructs a spatial tree layout that optimizes the locality of the neighbors in the compute grid. This approach thereby enables locality-optimized messaging within the tree. Our layout achieves a polynomial factor improvement in energy compared to utilizing a PRAM approach. Using this layout, we develop energy-efficient treefix sum and lowest common ancestor algorithms, which are both fundamental building blocks for other graph algorithms. With high probability, our algorithms exhibit near-linear energy and poly-logarithmic depth. Our contributions augment a growing body of work demonstrating that computations can have both high spatial locality and low depth. Moreover, our work constitutes an advancement in the spatial layout of irregular and sparse computations.
Intelligent vehicles have demonstrated excellent capabilities in many transportation scenarios. The inference capabilities of neural networks using cameras limit the accuracy of accident detection in complex transportation systems. This paper presents AccidentBlip2, a pure vision-based multi-modal large model Blip2 for accident detection. Our method first processes the multi-view images through ViT-14g and sends the multi-view features into the cross-attention layer of Q-Former. Different from Blip2's Q-Former, our Motion Q-Former extends the self-attention layer with the temporal-attention layer. In the inference process, the queries generated from previous frames are input into Motion Q-Former to aggregate temporal information. Queries are updated with an auto-regressive strategy and are sent to a MLP to detect whether there is an accident in the surrounding environment. Our AccidentBlip2 can be extended to a multi-vehicle cooperative system by deploying Motion Q-Former on each vehicle and simultaneously fusing the generated queries into the MLP for auto-regressive inference. Our approach outperforms existing video large language models in detection accuracy in both single-vehicle and multi-vehicle systems.
Hoaxes are a recognised form of disinformation created deliberately, with potential serious implications in the credibility of reference knowledge resources such as Wikipedia. What makes detecting Wikipedia hoaxes hard is that they often are written according to the official style guidelines. In this work, we first provide a systematic analysis of the similarities and discrepancies between legitimate and hoax Wikipedia articles, and introduce Hoaxpedia, a collection of 311 Hoax articles (from existing literature as well as official Wikipedia lists) alongside semantically similar real articles. We report results of binary classification experiments in the task of predicting whether a Wikipedia article is real or hoax, and analyze several settings as well as a range of language models. Our results suggest that detecting deceitful content in Wikipedia based on content alone, despite not having been explored much in the past, is a promising direction.
Traditional optimization-based planners, while effective, suffer from high computational costs, resulting in slow trajectory generation. A successful strategy to reduce computation time involves using Imitation Learning (IL) to develop fast neural network (NN) policies from those planners, which are treated as expert demonstrators. Although the resulting NN policies are effective at quickly generating trajectories similar to those from the expert, (1) their output does not explicitly account for dynamic feasibility, and (2) the policies do not accommodate changes in the constraints different from those used during training. To overcome these limitations, we propose Constraint-Guided Diffusion (CGD), a novel IL-based approach to trajectory planning. CGD leverages a hybrid learning/online optimization scheme that combines diffusion policies with a surrogate efficient optimization problem, enabling the generation of collision-free, dynamically feasible trajectories. The key ideas of CGD include dividing the original challenging optimization problem solved by the expert into two more manageable sub-problems: (a) efficiently finding collision-free paths, and (b) determining a dynamically-feasible time-parametrization for those paths to obtain a trajectory. Compared to conventional neural network architectures, we demonstrate through numerical evaluations significant improvements in performance and dynamic feasibility under scenarios with new constraints never encountered during training.
Deep models, e.g., CNNs and Vision Transformers, have achieved impressive achievements in many vision tasks in the closed world. However, novel classes emerge from time to time in our ever-changing world, requiring a learning system to acquire new knowledge continually. For example, a robot needs to understand new instructions, and an opinion monitoring system should analyze emerging topics every day. Class-Incremental Learning (CIL) enables the learner to incorporate the knowledge of new classes incrementally and build a universal classifier among all seen classes. Correspondingly, when directly training the model with new class instances, a fatal problem occurs -- the model tends to catastrophically forget the characteristics of former ones, and its performance drastically degrades. There have been numerous efforts to tackle catastrophic forgetting in the machine learning community. In this paper, we survey comprehensively recent advances in deep class-incremental learning and summarize these methods from three aspects, i.e., data-centric, model-centric, and algorithm-centric. We also provide a rigorous and unified evaluation of 16 methods in benchmark image classification tasks to find out the characteristics of different algorithms empirically. Furthermore, we notice that the current comparison protocol ignores the influence of memory budget in model storage, which may result in unfair comparison and biased results. Hence, we advocate fair comparison by aligning the memory budget in evaluation, as well as several memory-agnostic performance measures. The source code to reproduce these evaluations is available at //github.com/zhoudw-zdw/CIL_Survey/
Joint image-text embedding is the bedrock for most Vision-and-Language (V+L) tasks, where multimodality inputs are jointly processed for visual and textual understanding. In this paper, we introduce UNITER, a UNiversal Image-TExt Representation, learned through large-scale pre-training over four image-text datasets (COCO, Visual Genome, Conceptual Captions, and SBU Captions), which can power heterogeneous downstream V+L tasks with joint multimodal embeddings. We design three pre-training tasks: Masked Language Modeling (MLM), Image-Text Matching (ITM), and Masked Region Modeling (MRM, with three variants). Different from concurrent work on multimodal pre-training that apply joint random masking to both modalities, we use conditioned masking on pre-training tasks (i.e., masked language/region modeling is conditioned on full observation of image/text). Comprehensive analysis shows that conditioned masking yields better performance than unconditioned masking. We also conduct a thorough ablation study to find an optimal setting for the combination of pre-training tasks. Extensive experiments show that UNITER achieves new state of the art across six V+L tasks (over nine datasets), including Visual Question Answering, Image-Text Retrieval, Referring Expression Comprehension, Visual Commonsense Reasoning, Visual Entailment, and NLVR2.
With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.