亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study the deviation inequality for a sum of high-dimensional random matrices and operators with dependence and arbitrary heavy tails. There is an increase in the importance of the problem of estimating high-dimensional matrices, and dependence and heavy-tail properties of data are among the most critical topics currently. In this paper, we derive a dimension-free upper bound on the deviation, that is, the bound does not depend explicitly on the dimension of matrices, but depends on their effective rank. Our result is a generalization of several existing studies on the deviation of the sum of matrices. Our proof is based on two techniques: (i) a variational approximation of the dual of moment generating functions, and (ii) robustification through truncation of eigenvalues of matrices. We show that our results are applicable to several problems such as covariance matrix estimation, hidden Markov models, and overparameterized linear regression models.

相關內容

Via operator theoretic methods, we formalize the concentration phenomenon for a given observable `$r$' of a discrete time Markov chain with `$\mu_{\pi}$' as invariant ergodic measure, possibly having support on an unbounded state space. The main contribution of this paper is circumventing tedious probabilistic methods with a study of a composition of the Markov transition operator $P$ followed by a multiplication operator defined by $e^{r}$. It turns out that even if the observable/ reward function is unbounded, but for some for some $q>2$, $\|e^{r}\|_{q \rightarrow 2} \propto \exp\big(\mu_{\pi}(r) +\frac{2q}{q-2}\big) $ and $P$ is hyperbounded with norm control $\|P\|_{2 \rightarrow q }< e^{\frac{1}{2}[\frac{1}{2}-\frac{1}{q}]}$, sharp non-asymptotic concentration bounds follow. \emph{Transport-entropy} inequality ensures the aforementioned upper bound on multiplication operator for all $q>2$. The role of \emph{reversibility} in concentration phenomenon is demystified. These results are particularly useful for the reinforcement learning and controls communities as they allow for concentration inequalities w.r.t standard unbounded obersvables/reward functions where exact knowledge of the system is not available, let alone the reversibility of stationary measure.

Explicit time integration schemes coupled with Galerkin discretizations of time-dependent partial differential equations require solving a linear system with the mass matrix at each time step. For applications in structural dynamics, the solution of the linear system is frequently approximated through so-called mass lumping, which consists in replacing the mass matrix by some diagonal approximation. Mass lumping has been widely used in engineering practice for decades already and has a sound mathematical theory supporting it for finite element methods using the classical Lagrange basis. However, the theory for more general basis functions is still missing. Our paper partly addresses this shortcoming. Some special and practically relevant properties of lumped mass matrices are proved and we discuss how these properties naturally extend to banded and Kronecker product matrices whose structure allows to solve linear systems very efficiently. Our theoretical results are applied to isogeometric discretizations but are not restricted to them.

This paper proposes a new algorithm for an automatic variable selection procedure in High Dimensional Graphical Models. The algorithm selects the relevant variables for the node of interest on the basis of mutual information. Several contributions in literature have investigated the use of mutual information in selecting the appropriate number of relevant features in a large data-set, but most of them have focused on binary outcomes or required high computational effort. The algorithm here proposed overcomes these drawbacks as it is an extension of Chow and Liu's algorithm. Once, the probabilistic structure of a High Dimensional Graphical Model is determined via the said algorithm, the best path-step, including variables with the most explanatory/predictive power for a variable of interest, is determined via the computation of the entropy coefficient of determination. The latter, being based on the notion of (symmetric) Kullback-Leibler divergence, turns out to be closely connected to the mutual information of the involved variables. The application of the algorithm to a wide range of real-word and publicly data-sets has highlighted its potential and greater effectiveness compared to alternative extant methods.

To explore the limits of a stochastic gradient method, it may be useful to consider an example consisting of an infinite number of quadratic functions. In this context, it is appropriate to determine the expected value and the covariance matrix of the stochastic noise, i.e. the difference of the true gradient and the approximated gradient generated from a finite sample. When specifying the covariance matrix, the expected value of a quadratic form QBQ is needed, where Q is a Wishart distributed random matrix and B is an arbitrary fixed symmetric matrix. After deriving an expression for E(QBQ) and considering some special cases, a numerical example is used to show how these results can support the comparison of two stochastic methods.

We consider the following data perturbation model, where the covariates incur multiplicative errors. For two $n \times m$ random matrices $U, X$, we denote by $U \circ X$ the Hadamard or Schur product, which is defined as $(U \circ X)_{ij} = (U_{ij}) \cdot (X_{ij})$. In this paper, we study the subgaussian matrix variate model, where we observe the matrix variate data $X$ through a random mask $U$: $$ {\mathcal X} = U \circ X \; \; \; \text{ where} \; \; \;X = B^{1/2} {\mathbb{Z}} A^{1/2}, $$ where ${\mathbb{Z}}$ is a random matrix with independent subgaussian entries, and $U$ is a mask matrix with either zero or positive entries, where ${\mathbb E} U_{ij} \in [0, 1]$ and all entries are mutually independent. Subsampling in rows, or columns, or random sampling of entries of $X$ are special cases of this model. Under the assumption of independence between $U$ and $X$, we introduce componentwise unbiased estimators for estimating covariance $A$ and $B$, and prove the concentration of measure bounds in the sense of guaranteeing the restricted eigenvalue($\textsf{RE}$) conditions to hold on the unbiased estimator for $B$, when columns of data matrix $X$ are sampled with different rates. We further develop multiple regression methods for estimating the inverse of $B$ and show statistical rate of convergence. Our results provide insight for sparse recovery for relationships among entities (samples, locations, items) when features (variables, time points, user ratings) are present in the observed data matrix ${\mathcal X}$ with heterogeneous rates. Our proof techniques can certainly be extended to other scenarios. We provide simulation evidence illuminating the theoretical predictions.

Understanding the shape of a distribution of data is of interest to people in a great variety of fields, as it may affect the types of algorithms used for that data. We study one such problem in the framework of distribution property testing, characterizing the number of samples required to to distinguish whether a distribution has a certain property or is far from having that property. In particular, given samples from a distribution, we seek to characterize the tail of the distribution, that is, understand how many elements appear infrequently. We develop an algorithm based on a careful bucketing scheme that distinguishes light-tailed distributions from non-light-tailed ones with respect to a definition based on the hazard rate, under natural smoothness and ordering assumptions. We bound the number of samples required for this test to succeed with high probability in terms of the parameters of the problem, showing that it is polynomial in these parameters. Further, we prove a hardness result that implies that this problem cannot be solved without any assumptions.

We revisit the problem of finding small $\epsilon$-separation keys introduced by Motwani and Xu (2008). In this problem, the input is $m$-dimensional tuples $x_1,x_2,\ldots,x_n $. The goal is to find a small subset of coordinates that separates at least $(1-\epsilon){n \choose 2}$ pairs of tuples. They provided a fast algorithm that runs on $\Theta(m/\epsilon)$ tuples sampled uniformly at random. We show that the sample size can be improved to $\Theta(m/\sqrt{\epsilon})$. Our algorithm also enjoys a faster running time. To obtain this result, we provide upper and lower bounds on the sample size to solve the following decision problem. Given a subset of coordinates $A$, reject if $A$ separates fewer than $(1-\epsilon){n \choose 2}$ pairs, and accept if $A$ separates all pairs. The algorithm must be correct with probability at least $1-\delta$ for all $A$. We show that for algorithms based on sampling: - $\Theta(m/\sqrt{\epsilon})$ samples are sufficient and necessary so that $\delta \leq e^{-m}$ and - $\Omega(\sqrt{\frac{\log m}{\epsilon}})$ samples are necessary so that $\delta$ is a constant. Our analysis is based on a constrained version of the balls-into-bins problem. We believe our analysis may be of independent interest. We also study a related problem that asks for the following sketching algorithm: with given parameters $\alpha,k$ and $\epsilon$, the algorithm takes a subset of coordinates $A$ of size at most $k$ and returns an estimate of the number of unseparated pairs in $A$ up to a $(1\pm\epsilon)$ factor if it is at least $\alpha {n \choose 2}$. We show that even for constant $\alpha$ and success probability, such a sketching algorithm must use $\Omega(mk \log \epsilon^{-1})$ bits of space; on the other hand, uniform sampling yields a sketch of size $\Theta(\frac{mk \log m}{\alpha \epsilon^2})$ for this purpose.

We study a quantum switch that distributes maximally entangled multipartite states to sets of users. The entanglement switching process requires two steps: first, each user attempts to generate bipartite entanglement between itself and the switch; and second, the switch performs local operations and a measurement to create multipartite entanglement for a set of users. In this work, we study a simple variant of this system, wherein the switch has infinite memory and the links that connect the users to the switch are identical. Further, we assume that all quantum states, if generated successfully, have perfect fidelity and that decoherence is negligible. This problem formulation is of interest to several distributed quantum applications, while the technical aspects of this work result in new contributions within queueing theory. Via extensive use of Lyapunov functions, we derive necessary and sufficient conditions for the stability of the system and closed-form expressions for the switch capacity and the expected number of qubits in memory.

We discuss the continuum limit of discrete Dirac operators on the square lattice in $\mathbb R^2$ as the mesh size tends to zero. To this end, we propose the most natural and simplest embedding of $\ell^2(\mathbb Z_h^d)$ into $L^2(\mathbb R^d)$, which enables us to compare the discrete Dirac operators with the continuum Dirac operators in the same Hilbert space $L^2(\mathbb R^2)^2$. In particular, we prove that the discrete Dirac operators converge to the continuum Dirac operators in the strong resolvent sense. Potentials are assumed to be bounded and uniformly continuous functions on $\mathbb R^2$ and allowed to be complex matrix-valued. We also prove that the discrete Dirac operators do not converge to the continuum Dirac operators in the norm resolvent sense. This is closely related to the observation that the Liouville theorem does not hold in discrete complex analysis.

Most published work on differential privacy (DP) focuses exclusively on meeting privacy constraints, by adding to the query noise with a pre-specified parametric distribution model, typically with one or two degrees of freedom. The accuracy of the response and its utility to the intended use are frequently overlooked. Considering that several database queries are categorical in nature (e.g., a label, a ranking, etc.), or can be quantized, the parameters that define the randomized mechanism's distribution are finite. Thus, it is reasonable to search through numerical optimization for the probability masses that meet the privacy constraints while minimizing the query distortion. Considering the modulo summation of random noise as the DP mechanism, the goal of this paper is to introduce a tractable framework to design the optimum noise probability mass function (PMF) for database queries with a discrete and finite set, optimizing with an expected distortion metric for a given $(\epsilon,\delta)$. We first show that the optimum PMF can be obtained by solving a mixed integer linear program (MILP). Then, we derive closed-form solutions for the optimum PMF that minimize the probability of error for two special cases. We show numerically that the proposed optimal mechanisms significantly outperform the state-of-the-art.

北京阿比特科技有限公司