Efficiently discovering molecules that meet various property requirements can significantly benefit the drug discovery industry. Since it is infeasible to search over the entire chemical space, recent works adopt generative models for goal-directed molecular generation. They tend to utilize the iterative processes, optimizing the parameters of the molecular generative models at each iteration to produce promising molecules for further validation. Assessments are exploited to evaluate the generated molecules at each iteration, providing direction for model optimization. However, most previous works require a massive number of expensive and time-consuming assessments, e.g., wet experiments and molecular dynamic simulations, leading to the lack of practicability. To reduce the assessments in the iterative process, we propose a cost-effective evolution strategy in latent space, which optimizes the molecular latent representation vectors instead. We adopt a pre-trained molecular generative model to map the latent and observation spaces, taking advantage of the large-scale unlabeled molecules to learn chemical knowledge. To further reduce the number of expensive assessments, we introduce a pre-screener as the proxy to the assessments. We conduct extensive experiments on multiple optimization tasks comparing the proposed framework to several advanced techniques, showing that the proposed framework achieves better performance with fewer assessments.
Modern drug discovery is often time-consuming, complex and cost-ineffective due to the large volume of molecular data and complicated molecular properties. Recently, machine learning algorithms have shown promising results in virtual screening of automated drug discovery by predicting molecular properties. While emerging learning methods such as graph neural networks and recurrent neural networks exhibit high accuracy, they are also notoriously computation-intensive and memory-intensive with operations such as feature embeddings or deep convolutions. In this paper, we propose a viable alternative to existing learning methods by presenting MoleHD, a method based on brain-inspired hyperdimensional computing (HDC) for molecular property prediction. We develop HDC encoders to project SMILES representation of a molecule into high-dimensional vectors that are used for HDC training and inference. We perform an extensive evaluation using 29 classification tasks from 3 widely-used molecule datasets (Clintox, BBBP, SIDER) under three splits methods (random, scaffold, and stratified). By an comprehensive comparison with 8 existing learning models including SOTA graph/recurrent neural networks, we show that MoleHD is able to achieve highest ROC-AUC score on random and scaffold splits on average across 3 datasets and achieve second-highest on stratified split. Importantly, MoleHD achieves such performance with significantly reduced computing cost and training efforts. To the best of our knowledge, this is the first HDC-based method for drug discovery. The promising results presented in this paper can potentially lead to a novel path in drug discovery research.
Drug Discovery is a fundamental and ever-evolving field of research. The design of new candidate molecules requires large amounts of time and money, and computational methods are being increasingly employed to cut these costs. Machine learning methods are ideal for the design of large amounts of potential new candidate molecules, which are naturally represented as graphs. Graph generation is being revolutionized by deep learning methods, and molecular generation is one of its most promising applications. In this paper, we introduce a sequential molecular graph generator based on a set of graph neural network modules, which we call MG^2N^2. At each step, a node or a group of nodes is added to the graph, along with its connections. The modular architecture simplifies the training procedure, also allowing an independent retraining of a single module. Sequentiality and modularity make the generation process interpretable. The use of graph neural networks maximizes the information in input at each generative step, which consists of the subgraph produced during the previous steps. Experiments of unconditional generation on the QM9 and Zinc datasets show that our model is capable of generalizing molecular patterns seen during the training phase, without overfitting. The results indicate that our method is competitive, and outperforms challenging baselines for unconditional generation.
Neural Architecture Search (NAS) was first proposed to achieve state-of-the-art performance through the discovery of new architecture patterns, without human intervention. An over-reliance on expert knowledge in the search space design has however led to increased performance (local optima) without significant architectural breakthroughs, thus preventing truly novel solutions from being reached. In this work we 1) are the first to investigate casting NAS as a problem of finding the optimal network generator and 2) we propose a new, hierarchical and graph-based search space capable of representing an extremely large variety of network types, yet only requiring few continuous hyper-parameters. This greatly reduces the dimensionality of the problem, enabling the effective use of Bayesian Optimisation as a search strategy. At the same time, we expand the range of valid architectures, motivating a multi-objective learning approach. We demonstrate the effectiveness of this strategy on six benchmark datasets and show that our search space generates extremely lightweight yet highly competitive models.
Recent advances in maximizing mutual information (MI) between the source and target have demonstrated its effectiveness in text generation. However, previous works paid little attention to modeling the backward network of MI (i.e., dependency from the target to the source), which is crucial to the tightness of the variational information maximization lower bound. In this paper, we propose Adversarial Mutual Information (AMI): a text generation framework which is formed as a novel saddle point (min-max) optimization aiming to identify joint interactions between the source and target. Within this framework, the forward and backward networks are able to iteratively promote or demote each other's generated instances by comparing the real and synthetic data distributions. We also develop a latent noise sampling strategy that leverages random variations at the high-level semantic space to enhance the long term dependency in the generation process. Extensive experiments based on different text generation tasks demonstrate that the proposed AMI framework can significantly outperform several strong baselines, and we also show that AMI has potential to lead to a tighter lower bound of maximum mutual information for the variational information maximization problem.
Partial multi-label learning (PML), which tackles the problem of learning multi-label prediction models from instances with overcomplete noisy annotations, has recently started gaining attention from the research community. In this paper, we propose a novel adversarial learning model, PML-GAN, under a generalized encoder-decoder framework for partial multi-label learning. The PML-GAN model uses a disambiguation network to identify noisy labels and uses a multi-label prediction network to map the training instances to the disambiguated label vectors, while deploying a generative adversarial network as an inverse mapping from label vectors to data samples in the input feature space. The learning of the overall model corresponds to a minimax adversarial game, which enhances the correspondence of input features with the output labels in a bi-directional mapping. Extensive experiments are conducted on multiple datasets, while the proposed model demonstrates the state-of-the-art performance for partial multi-label learning.
Molecular graph generation is a fundamental problem for drug discovery and has been attracting growing attention. The problem is challenging since it requires not only generating chemically valid molecular structures but also optimizing their chemical properties in the meantime. Inspired by the recent progress in deep generative models, in this paper we propose a flow-based autoregressive model for graph generation called GraphAF. GraphAF combines the advantages of both autoregressive and flow-based approaches and enjoys: (1) high model flexibility for data density estimation; (2) efficient parallel computation for training; (3) an iterative sampling process, which allows leveraging chemical domain knowledge for valency checking. Experimental results show that GraphAF is able to generate 68% chemically valid molecules even without chemical knowledge rules and 100% valid molecules with chemical rules. The training process of GraphAF is two times faster than the existing state-of-the-art approach GCPN. After fine-tuning the model for goal-directed property optimization with reinforcement learning, GraphAF achieves state-of-the-art performance on both chemical property optimization and constrained property optimization.
Relevance search is to find top-ranked entities in a knowledge graph (KG) that are relevant to a query entity. Relevance is ambiguous, particularly over a schema-rich KG like DBpedia which supports a wide range of different semantics of relevance based on numerous types of relations and attributes. As users may lack the expertise to formalize the desired semantics, supervised methods have emerged to learn the hidden user-defined relevance from user-provided examples. Along this line, in this paper we propose a novel generative model over KGs for relevance search, named GREASE. The model applies to meta-path based relevance where a meta-path characterizes a particular type of semantics of relating the query entity to answer entities. It is also extended to support properties that constrain answer entities. Extensive experiments on two large-scale KGs demonstrate that GREASE has advanced the state of the art in effectiveness, expressiveness, and efficiency.
This paper studies the problem of domain division problem which aims to segment instances drawn from different probabilistic distributions. Such a problem exists in many previous recognition tasks, such as Open Set Learning (OSL) and Generalized Zero-Shot Learning (G-ZSL), where the testing instances come from either seen or novel/unseen classes of different probabilistic distributions. Previous works focused on either only calibrating the confident prediction of classifiers of seen classes (W-SVM), or taking unseen classes as outliers. In contrast, this paper proposes a probabilistic way of directly estimating and fine-tuning the decision boundary between seen and novel/unseen classes. In particular, we propose a domain division algorithm of learning to split the testing instances into known, unknown and uncertain domains, and then conduct recognize tasks in each domain. Two statistical tools, namely, bootstrapping and Kolmogorov-Smirnov (K-S) Test, for the first time, are introduced to discover and fine-tune the decision boundary of each domain. Critically, the uncertain domain is newly introduced in our framework to adopt those instances whose domain cannot be predicted confidently. Extensive experiments demonstrate that our approach achieved the state-of-the-art performance on OSL and G-ZSL benchmarks.
Generative Adversarial networks (GANs) have obtained remarkable success in many unsupervised learning tasks and unarguably, clustering is an important unsupervised learning problem. While one can potentially exploit the latent-space back-projection in GANs to cluster, we demonstrate that the cluster structure is not retained in the GAN latent space. In this paper, we propose ClusterGAN as a new mechanism for clustering using GANs. By sampling latent variables from a mixture of one-hot encoded variables and continuous latent variables, coupled with an inverse network (which projects the data to the latent space) trained jointly with a clustering specific loss, we are able to achieve clustering in the latent space. Our results show a remarkable phenomenon that GANs can preserve latent space interpolation across categories, even though the discriminator is never exposed to such vectors. We compare our results with various clustering baselines and demonstrate superior performance on both synthetic and real datasets.
Knowledge Graph Embedding methods aim at representing entities and relations in a knowledge base as points or vectors in a continuous vector space. Several approaches using embeddings have shown promising results on tasks such as link prediction, entity recommendation, question answering, and triplet classification. However, only a few methods can compute low-dimensional embeddings of very large knowledge bases. In this paper, we propose KG2Vec, a novel approach to Knowledge Graph Embedding based on the skip-gram model. Instead of using a predefined scoring function, we learn it relying on Long Short-Term Memories. We evaluated the goodness of our embeddings on knowledge graph completion and show that KG2Vec is comparable to the quality of the scalable state-of-the-art approaches and can process large graphs by parsing more than a hundred million triples in less than 6 hours on common hardware.