We propose a distributed cooperative positioning algorithm using the extended Kalman filter (EKF) based spatio-temporal data fusion (STDF) for a wireless network composed of sparsely distributed high-mobility nodes. Our algorithm first makes a coarse estimation of the position and mobility state of the nodes by using the prediction step of EKF. Then it utilizes the coarse estimate as the prior of STDF that relies on factor graph (FG), thus facilitates inferring a posteriori distributions of the agents' positions in a distributed manner. We approximate the nonlinear terms of the messages passed on the associated FG with high precision by exploiting the second-order Taylor polynomial and obtain closed-form representations of each message in the data fusion step, where temporal measurements by imperfect hardware are considered additionally. In the third stage, refinement of position estimate is performed by invoking the update step of EKF. Simulation results and analysis show that our EKF-STDF has a lower computational complexity than the state-of-the-art EKF-based algorithms, while achieving an even superior positioning performance in harsh environment.
The problem of function approximation by neural dynamical systems has typically been approached in a top-down manner: Any continuous function can be approximated to an arbitrary accuracy by a sufficiently complex model with a given architecture. This can lead to high-complexity controls which are impractical in applications. In this paper, we take the opposite, constructive approach: We impose various structural restrictions on system dynamics and consequently characterize the class of functions that can be realized by such a system. The systems are implemented as a cascade interconnection of a neural stochastic differential equation (Neural SDE), a deterministic dynamical system, and a readout map. Both probabilistic and geometric (Lie-theoretic) methods are used to characterize the classes of functions realized by such systems.
A novel information-theoretic approach is proposed to assess the global practical identifiability of Bayesian statistical models. Based on the concept of conditional mutual information, an estimate of information gained for each model parameter is used to quantify the identifiability with practical considerations. No assumptions are made about the structure of the statistical model or the prior distribution while constructing the estimator. The estimator has the following notable advantages: first, no controlled experiment or data is required to conduct the practical identifiability analysis; second, unlike popular variance-based global sensitivity analysis methods, different forms of uncertainties, such as model-form, parameter, or measurement can be taken into account; third, the identifiability analysis is global, and therefore independent of a realization of the parameters. If an individual parameter has low identifiability, it can belong to an identifiable subset such that parameters within the subset have a functional relationship and thus have a combined effect on the statistical model. The practical identifiability framework is extended to highlight the dependencies between parameter pairs that emerge a posteriori to find identifiable parameter subsets. The applicability of the proposed approach is demonstrated using a linear Gaussian model and a non-linear methane-air reduced kinetics model. It is shown that by examining the information gained for each model parameter along with its dependencies with other parameters, a subset of parameters that can be estimated with high posterior certainty can be found.
Despite their competitive performance on knowledge-intensive tasks, large language models (LLMs) still have limitations in memorizing all world knowledge especially long tail knowledge. In this paper, we study the KG-augmented language model approach for solving the knowledge graph question answering (KGQA) task that requires rich world knowledge. Existing work has shown that retrieving KG knowledge to enhance LLMs prompting can significantly improve LLMs performance in KGQA. However, their approaches lack a well-formed verbalization of KG knowledge, i.e., they ignore the gap between KG representations and textual representations. To this end, we propose an answer-sensitive KG-to-Text approach that can transform KG knowledge into well-textualized statements most informative for KGQA. Based on this approach, we propose a KG-to-Text enhanced LLMs framework for solving the KGQA task. Experiments on several KGQA benchmarks show that the proposed KG-to-Text augmented LLMs approach outperforms previous KG-augmented LLMs approaches regarding answer accuracy and usefulness of knowledge statements.
Blockwise self-attentional encoder models have recently emerged as one promising end-to-end approach to simultaneous speech translation. These models employ a blockwise beam search with hypothesis reliability scoring to determine when to wait for more input speech before translating further. However, this method maintains multiple hypotheses until the entire speech input is consumed -- this scheme cannot directly show a single \textit{incremental} translation to users. Further, this method lacks mechanisms for \textit{controlling} the quality vs. latency tradeoff. We propose a modified incremental blockwise beam search incorporating local agreement or hold-$n$ policies for quality-latency control. We apply our framework to models trained for online or offline translation and demonstrate that both types can be effectively used in online mode. Experimental results on MuST-C show 0.6-3.6 BLEU improvement without changing latency or 0.8-1.4 s latency improvement without changing quality.
We propose a method for analyzing the distributed random coordinate descent algorithm for solving separable resource allocation problems in the context of an open multiagent system, where agents can be replaced during the process. In particular, we characterize the evolution of the distance to the minimizer in expectation by following a time-varying optimization approach which builds on two components. First, we establish the linear convergence of the algorithm in closed systems, in terms of the estimate towards the minimizer, for general graphs and appropriate step-size. Second, we estimate the change of the optimal solution after a replacement, in order to evaluate its effect on the distance between the current estimate and the minimizer. From these two elements, we derive stability conditions in open systems and establish the linear convergence of the algorithm towards a steady-state expected error. Our results enable to characterize the trade-off between speed of convergence and robustness to agent replacements, under the assumptions that local functions are smooth, strongly convex, and have their minimizers located in a given ball. The approach proposed in this paper can moreover be extended to other algorithms guaranteeing linear convergence in closed system.
Robotic assistance for experimental manipulation in the life sciences is expected to enable precise manipulation of valuable samples, regardless of the skill of the scientist. Experimental specimens in the life sciences are subject to individual variability and deformation, and therefore require autonomous robotic control. As an example, we are studying the installation of a cranial window in a mouse. This operation requires the removal of the skull, which is approximately 300 um thick, to cut it into a circular shape 8 mm in diameter, but the shape of the mouse skull varies depending on the strain of mouse, sex and week of age. The thickness of the skull is not uniform, with some areas being thin and others thicker. It is also difficult to ensure that the skulls of the mice are kept in the same position for each operation. It is not realistically possible to measure all these features and pre-program a robotic trajectory for individual mice. The paper therefore proposes an autonomous robotic drilling method. The proposed method consists of drilling trajectory planning and image-based task completion level recognition. The trajectory planning adjusts the z-position of the drill according to the task completion level at each discrete point, and forms the 3D drilling path via constrained cubic spline interpolation while avoiding overshoot. The task completion level recognition uses a DSSD-inspired deep learning model to estimate the task completion level of each discrete point. Since an egg has similar characteristics to a mouse skull in terms of shape, thickness and mechanical properties, removing the egg shell without damaging the membrane underneath was chosen as the simulation task. The proposed method was evaluated using a 6-DOF robotic arm holding a drill and achieved a success rate of 80% out of 20 trials.
Ordered sequences of data, specified with a join operation to combine sequences, serve as a foundation for the implementation of parallel functional algorithms. This abstract data type can be elegantly and efficiently implemented using balanced binary trees, where a join operation is provided to combine two trees and rebalance as necessary. In this work, we present a verified implementation and cost analysis of joinable red-black trees in $\textbf{calf}$, a dependent type theory for cost analysis. We implement red-black trees and auxiliary intermediate data structures in such a way that all correctness invariants are intrinsically maintained. Then, we describe and verify precise cost bounds on the operations, making use of the red-black tree invariants. Finally, we implement standard algorithms on sequences using the simple join-based signature and bound their cost in the case that red-black trees are used as the underlying implementation. All proofs are formally mechanized using the embedding of $\textbf{calf}$ in the Agda theorem prover.
Speech emotion recognition has evolved from research to practical applications. Previous studies of emotion recognition from speech have focused on developing models on certain datasets like IEMOCAP. The lack of data in the domain of emotion modeling emerges as a challenge to evaluate models in the other dataset, as well as to evaluate speech emotion recognition models that work in a multilingual setting. This paper proposes an ensemble learning to fuse results of pre-trained models for emotion share recognition from speech. The models were chosen to accommodate multilingual data from English and Spanish. The results show that ensemble learning can improve the performance of the baseline model with a single model and the previous best model from the late fusion. The performance is measured using the Spearman rank correlation coefficient since the task is a regression problem with ranking values. A Spearman rank correlation coefficient of 0.537 is reported for the test set, while for the development set, the score is 0.524. These scores are higher than the previous study of a fusion method from monolingual data, which achieved scores of 0.476 for the test and 0.470 for the development.
Gradient methods are experiencing a growth in methodological and theoretical developments owing to the challenges of optimization problems arising in data science. Focusing on data science applications with expensive objective function evaluations yet inexpensive gradient function evaluations, gradient methods that never make objective function evaluations are either being rejuvenated or actively developed. However, as we show, such gradient methods are all susceptible to catastrophic divergence under realistic conditions for data science applications. In light of this, gradient methods which make use of objective function evaluations become more appealing, yet, as we show, can result in an exponential increase in objective evaluations between accepted iterates. As a result, existing gradient methods are poorly suited to the needs of optimization problems arising from data science. In this work, we address this gap by developing a generic methodology that economically uses objective function evaluations in a problem-driven manner to prevent catastrophic divergence and avoid an explosion in objective evaluations between accepted iterates. Our methodology allows for specific procedures that can make use of specific step size selection methodologies or search direction strategies, and we develop a novel step size selection methodology that is well-suited to data science applications. We show that a procedure resulting from our methodology is highly competitive with standard optimization methods on CUTEst test problems. We then show a procedure resulting from our methodology is highly favorable relative to standard optimization methods on optimization problems arising in our target data science applications. Thus, we provide a novel gradient methodology that is better suited to optimization problems arising in data science.
The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.