Defined by Borel, a real number is normal to an integer base $b$, greater than or equal to $2$, if in its base-$b$ expansion every block of digits occurs with the same limiting frequency as every other block of the same length. We consider the problem of insertion in constructed base-$b$ normal expansions to obtain normality to base $(b+1)$.
Graph spanners are well-studied and widely used both in theory and practice. In a recent breakthrough, Chechik and Wulff-Nilsen [CW18] improved the state-of-the-art for light spanners by constructing a $(2k-1)(1+\epsilon)$-spanner with $O(n^{1+1/k})$ edges and $O_\epsilon(n^{1/k})$ lightness. Soon after, Filtser and Solomon [FS19] showed that the classic greedy spanner construction achieves the same bounds The major drawback of the greedy spanner is its running time of $O(mn^{1+1/k})$ (which is faster than [CW16]). This makes the construction impractical even for graphs of moderate size. Much faster spanner constructions do exist but they only achieve lightness $\Omega_\epsilon(kn^{1/k})$, even when randomization is used. The contribution of this paper is deterministic spanner constructions that are fast, and achieve similar bounds as the state-of-the-art slower constructions. Our first result is an $O_\epsilon(n^{2+1/k+\epsilon'})$ time spanner construction which achieves the state-of-the-art bounds. Our second result is an $O_\epsilon(m + n\log n)$ time construction of a spanner with $(2k-1)(1+\epsilon)$ stretch, $O(\log k\cdot n^{1+1/k})$ edges and $O_\epsilon(\log k\cdot n^{1/k})$ lightness. This is an exponential improvement in the dependence on $k$ compared to the previous result with such running time. Finally, for the important special case where $k=\log n$, for every constant $\epsilon>0$, we provide an $O(m+n^{1+\epsilon})$ time construction that produces an $O(\log n)$-spanner with $O(n)$ edges and $O(1)$ lightness which is asymptotically optimal. This is the first known sub-quadratic construction of such a spanner for any $k = \omega(1)$. To achieve our constructions, we show a novel deterministic incremental approximate distance oracle, which may be of independent interest.
We improve the bound on K\"uhnel's problem to determine the smallest $n$ such that the $k$-skeleton of an $n$-simplex $\Delta_n^{(k)}$ does not embed into a compact PL $2k$-manifold $M$ by showing that if $\Delta_n^{(k)}$ embeds into $M$, then $n\leq (2k+1)+(k+1)\beta_k(M;\mathbb Z_2)$. As a consequence we obtain improved Radon and Helly type results for set systems in such manifolds. Our main tool is a new description of an obstruction for embeddability of a $k$-complex $K$ into a compact PL $2k$-manifold $M$ via the intersection form on $M$. In our approach we need that for every map $f\colon K\to M$ the restriction to the $(k-1)$-skeleton of $K$ is nullhomotopic. In particular, this condition is satisfied in interesting cases if $K$ is $(k-1)$-connected, for example a $k$-skeleton of $n$-simplex, or if $M$ is $(k-1)$-connected. In addition, if $M$ is $(k-1)$-connected and $k\geq 3$, the obstruction is complete, meaning that a $k$-complex $K$ embeds into $M$ if and only if the obstruction vanishes. For trivial intersection forms, our obstruction coincides with the standard van Kampen obstruction. However, if the form is non-trivial, the obstruction is not linear but rather 'quadratic' in a sense that it vanishes if and only if certain system of quadratic diophantine equations is solvable. This may potentially be useful in attacking algorithmic decidability of embeddability of $k$-complexes into PL $2k$-manifolds.
We show that solution to the Hermite-Pad\'{e} type I approximation problem leads in a natural way to a subclass of solutions of the Hirota (discrete Kadomtsev-Petviashvili) system and of its adjoint linear problem. Our result explains the appearence of various ingredients of the integrable systems theory in application to multiple orthogonal polynomials, numerical algorthms, random matrices, and in other branches of mathematical physics and applied mathematics where the Hermite-Pad\'{e} approximation problem is relevant. We present also the geometric algorithm, based on the notion of Desargues maps, of construction of solutions of the problem in the projective space over the field of rational functions. As a byproduct we obtain the corresponding generalization of the Wynn recurrence. We isolate the boundary data of the Hirota system which provide solutions to Hermite-Pad\'{e} problem showing that the corresponding reduction lowers dimensionality of the system. In particular, we obtain certain equations which, in addition to the known ones given by Paszkowski, can be considered as direct analogs of the Frobenius identities. We study the place of the reduced system within the integrability theory, which results in finding multidimensional (in the sense of number of variables) extension of the discrete-time Toda chain equations.
Pattern matching on graphs has been widely studied lately due to its importance in genomics applications. Unfortunately, even the simplest problem of deciding if a string appears as a subpath of a graph admits a quadratic lower bound under the Orthogonal Vectors Hypothesis (Equi et al. ICALP 2019, SOFSEM 2021). To avoid this bottleneck, the research has shifted towards more specific graph classes, e.g. those induced from multiple sequence alignments (MSAs). Consider segmenting $\mathsf{MSA}[1..m,1..n]$ into $b$ blocks $\mathsf{MSA}[1..m,1..j_1]$, $\mathsf{MSA}[1..m,j_1+1..j_2]$, $\ldots$, $\mathsf{MSA}[1..m,j_{b-1}+1..n]$. The distinct strings in the rows of the blocks, after the removal of gap symbols, form the nodes of an elastic founder graph (EFG) where the edges represent the original connections observed in the MSA. An EFG is called indexable if a node label occurs as a prefix of only those paths that start from a node of the same block. Equi et al. (ISAAC 2021) showed that such EFGs support fast pattern matching and gave an $O(mn \log m)$-time algorithm for preprocessing the MSA in a way that allows the construction of indexable EFGs maximizing the number of blocks and, alternatively, minimizing the maximum length of a block, in $O(n)$ and $O(n \log\log n)$ time respectively. Using the suffix tree and solving a novel ancestor problem on trees, we improve the preprocessing to $O(mn)$ time and the $O(n \log \log n)$-time EFG construction to $O(n)$ time, thus showing that both types of indexable EFGs can be constructed in time linear in the input size.
In this paper, we study a non-local approximation of the time-dependent (local) Eikonal equation with Dirichlet-type boundary conditions, where the kernel in the non-local problem is properly scaled. Based on the theory of viscosity solutions, we prove existence and uniqueness of the viscosity solutions of both the local and non-local problems, as well as regularity properties of these solutions in time and space. We then derive error bounds between the solution to the non-local problem and that of the local one, both in continuous-time and Backward Euler time discretization. We then turn to studying continuum limits of non-local problems defined on random weighted graphs with $n$ vertices. In particular, we establish that if the kernel scale parameter decreases at an appropriate rate as $n$ grows, then almost surely, the solution of the problem on graphs converges uniformly to the viscosity solution of the local problem as the time step vanishes and the number vertices $n$ grows large.
A Regret Minimizing Set (RMS) is a useful concept in which a smaller subset of a database is selected while mostly preserving the best scores along every possible utility function. In this paper, we study the $k$-Regret Minimizing Sets ($k$-RMS) and Average Regret Minimizing Sets (ARMS) problems. $k$-RMS selects $r$ records from a database such that the maximum regret ratio between the $k$-th best score in the database and the best score in the selected records for any possible utility function is minimized. Meanwhile, ARMS minimizes the average of this ratio within a distribution of utility functions. Particularly, we study approximation algorithms for $k$-RMS and ARMS from the perspective of approximating the happiness ratio, which is equivalent to one minus the regret ratio. In this paper, we show that the problem of approximating the happiness of a $k$-RMS within any finite factor is NP-Hard when the dimensionality of the database is unconstrained and extend the result to an inapproximability proof for the regret. We then provide approximation algorithms for approximating the happiness of ARMS with better approximation ratios and time complexities than known algorithms for approximating the regret. We further provide dataset reduction schemes which can be used to reduce the runtime of existing heuristic based algorithms, as well as to derive polynomial-time approximation schemes for $k$-RMS when dimensionality is fixed. Finally, we provide experimental validation.
To characterize the location (mean, median) of a set of graphs, one needs a notion of centrality that is adapted to metric spaces, since graph sets are not Euclidean spaces. A standard approach is to consider the Frechet mean. In this work, we equip a set of graphs with the pseudometric defined by the norm between the eigenvalues of their respective adjacency matrix. Unlike the edit distance, this pseudometric reveals structural changes at multiple scales, and is well adapted to studying various statistical problems for graph-valued data. We describe an algorithm to compute an approximation to the sample Frechet mean of a set of undirected unweighted graphs with a fixed size using this pseudometric.
A strict bramble of a graph $G$ is a collection of pairwise-intersecting connected subgraphs of $G.$ The order of a strict bramble ${\cal B}$ is the minimum size of a set of vertices intersecting all sets of ${\cal B}.$ The strict bramble number of $G,$ denoted by ${\sf sbn}(G),$ is the maximum order of a strict bramble in $G.$ The strict bramble number of $G$ can be seen as a way to extend the notion of acyclicity, departing from the fact that (non-empty) acyclic graphs are exactly the graphs where every strict bramble has order one. We initiate the study of this graph parameter by providing three alternative definitions, each revealing different structural characteristics. The first is a min-max theorem asserting that ${\sf sbn}(G)$ is equal to the minimum $k$ for which $G$ is a minor of the lexicographic product of a tree and a clique on $k$ vertices (also known as the lexicographic tree product number). The second characterization is in terms of a new variant of a tree decomposition called lenient tree decomposition. We prove that ${\sf sbn}(G)$ is equal to the minimum $k$ for which there exists a lenient tree decomposition of $G$ of width at most $k.$ The third characterization is in terms of extremal graphs. For this, we define, for each $k,$ the concept of a $k$-domino-tree and we prove that every edge-maximal graph of strict bramble number at most $k$ is a $k$-domino-tree. We also identify three graphs that constitute the minor-obstruction set of the class of graphs with strict bramble number at most two. We complete our results by proving that, given some $G$ and $k,$ deciding whether ${\sf sbn}(G) \leq k$ is an ${\sf NP}$-complete problem.
Lattice Boltzmann schemes rely on the enlargement of the size of the target problem in order to solve PDEs in a highly parallelizable and efficient kinetic-like fashion, split into a collision and a stream phase. This structure, despite the well-known advantages from a computational standpoint, is not suitable to construct a rigorous notion of consistency with respect to the target equations and to provide a precise notion of stability. In order to alleviate these shortages and introduce a rigorous framework, we demonstrate that any lattice Boltzmann scheme can be rewritten as a corresponding multi-step Finite Difference scheme on the conserved variables. This is achieved by devising a suitable formalism based on operators, commutative algebra and polynomials. Therefore, the notion of consistency of the corresponding Finite Difference scheme allows to invoke the Lax-Richtmyer theorem in the case of linear lattice Boltzmann schemes. Moreover, we show that the frequently-used von Neumann-like stability analysis for lattice Boltzmann schemes entirely corresponds to the von Neumann stability analysis of their Finite Difference counterpart. More generally, the usual tools for the analysis of Finite Difference schemes are now readily available to study lattice Boltzmann schemes. Their relevance is verified by means of numerical illustrations.
The Gromov-Hausdorff distance $(d_{GH})$ proves to be a useful distance measure between shapes. In order to approximate $d_{GH}$ for compact subsets $X,Y\subset\mathbb{R}^d$, we look into its relationship with $d_{H,iso}$, the infimum Hausdorff distance under Euclidean isometries. As already known for dimension $d\geq 2$, the $d_{H,iso}$ cannot be bounded above by a constant factor times $d_{GH}$. For $d=1$, however, we prove that $d_{H,iso}\leq\frac{5}{4}d_{GH}$. We also show that the bound is tight. In effect, this gives rise to an $O(n\log{n})$-time algorithm to approximate $d_{GH}$ with an approximation factor of $\left(1+\frac{1}{4}\right)$.