亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

What is the optimal way to approximate a high-dimensional diffusion process by one in which the coordinates are independent? This paper presents a construction, called the \emph{independent projection}, which is optimal for two natural criteria. First, when the original diffusion is reversible with invariant measure $\rho_*$, the independent projection serves as the Wasserstein gradient flow for the relative entropy $H(\cdot\,|\,\rho_*)$ constrained to the space of product measures. This is related to recent Langevin-based sampling schemes proposed in the statistical literature on mean field variational inference. In addition, we provide both qualitative and quantitative results on the long-time convergence of the independent projection, with quantitative results in the log-concave case derived via a new variant of the logarithmic Sobolev inequality. Second, among all processes with independent coordinates, the independent projection is shown to exhibit the slowest growth rate of path-space entropy relative to the original diffusion. This sheds new light on the classical McKean-Vlasov equation and recent variants proposed for non-exchangeable systems, which can be viewed as special cases of the independent projection.

相關內容

We consider the general problem of Bayesian binary regression and we introduce a new class of distributions, the Perturbed Unified Skew Normal (pSUN, henceforth), which generalizes the Unified Skew-Normal (SUN) class. We show that the new class is conjugate to any binary regression model, provided that the link function may be expressed as a scale mixture of Gaussian densities. We discuss in detail the popular logit case, and we show that, when a logistic regression model is combined with a Gaussian prior, posterior summaries such as cumulants and normalizing constants can be easily obtained through the use of an importance sampling approach, opening the way to straightforward variable selection procedures. For more general priors, the proposed methodology is based on a simple Gibbs sampler algorithm. We also claim that, in the p > n case, the proposed methodology shows better performances - both in terms of mixing and accuracy - compared to the existing methods. We illustrate the performance through several simulation studies and two data analyses.

Unconstrained convex optimization problems have enormous applications in various field of science and engineering. Different iterative methods are available in literature to solve such problem, and Newton method is among the oldest and simplest one. Due to slow convergence rate of Newton's methods, many research have been carried out to modify the Newton's method for faster convergence rate. In 2019, Ghazali et al. modified Newton's method and proposed Netwon-SOR method, which is a combination of Newton method with SOR iterative method to solve a linear system. In this paper, we propose a modification of Newton-SOR method by modifying SOR method to generalized SOR method. Numerical experiments are carried out to check the efficiently of the proposed method.

Graph Neural Networks (GNNs) are a broad class of connectionist models for graph processing. Recent studies have shown that GNNs can approximate any function on graphs, modulo the equivalence relation on graphs defined by the Weisfeiler--Lehman (WL) test. However, these results suffer from some limitations, both because they were derived using the Stone--Weierstrass theorem -- which is existential in nature, -- and because they assume that the target function to be approximated must be continuous. Furthermore, all current results are dedicated to graph classification/regression tasks, where the GNN must produce a single output for the whole graph, while also node classification/regression problems, in which an output is returned for each node, are very common. In this paper, we propose an alternative way to demonstrate the approximation capability of GNNs that overcomes these limitations. Indeed, we show that GNNs are universal approximators in probability for node classification/regression tasks, as they can approximate any measurable function that satisfies the 1--WL equivalence on nodes. The proposed theoretical framework allows the approximation of generic discontinuous target functions and also suggests the GNN architecture that can reach a desired approximation. In addition, we provide a bound on the number of the GNN layers required to achieve the desired degree of approximation, namely $2r-1$, where $r$ is the maximum number of nodes for the graphs in the domain.

The optimization of open-loop shallow geothermal systems, which includes both design and operational aspects, is an important research area aimed at improving their efficiency and sustainability and the effective management of groundwater as a shallow geothermal resource. This paper investigates various approaches to address optimization problems arising from these research and implementation questions about GWHP systems. The identified optimization approaches are thoroughly analyzed based on criteria such as computational cost and applicability. Moreover, a novel classification scheme is introduced that categorizes the approaches according to the types of groundwater simulation model and the optimization algorithm used. Simulation models are divided into two types: numerical and simplified (analytical or data-driven) models, while optimization algorithms are divided into gradient-based and derivative-free algorithms. Finally, a comprehensive review of existing approaches in the literature is provided, highlighting their strengths and limitations and offering recommendations for both the use of existing approaches and the development of new, improved ones in this field.

Social behavior, defined as the process by which individuals act and react in response to others, is crucial for the function of societies and holds profound implications for mental health. To fully grasp the intricacies of social behavior and identify potential therapeutic targets for addressing social deficits, it is essential to understand its core principles. Although machine learning algorithms have made it easier to study specific aspects of complex behavior, current methodologies tend to focus primarily on single-animal behavior. In this study, we introduce LISBET (seLf-supervIsed Social BEhavioral Transformer), a model designed to detect and segment social interactions. Our model eliminates the need for feature selection and extensive human annotation by using self-supervised learning to detect and quantify social behaviors from dynamic body parts tracking data. LISBET can be used in hypothesis-driven mode to automate behavior classification using supervised finetuning, and in discovery-driven mode to segment social behavior motifs using unsupervised learning. We found that motifs recognized using the discovery-driven approach not only closely match the human annotations but also correlate with the electrophysiological activity of dopaminergic neurons in the Ventral Tegmental Area (VTA). We hope LISBET will help the community improve our understanding of social behaviors and their neural underpinnings.

Hesitant fuzzy sets are widely used in the instances of uncertainty and hesitation. The inclusion relationship is an important and foundational definition for sets. Hesitant fuzzy set, as a kind of set, needs explicit definition of inclusion relationship. Base on the hesitant fuzzy membership degree of discrete form, several kinds of inclusion relationships for hesitant fuzzy sets are proposed. And then some foundational propositions of hesitant fuzzy sets and the families of hesitant fuzzy sets are presented. Finally, some foundational propositions of hesitant fuzzy information systems with respect to parameter reductions are put forward, and an example and an algorithm are given to illustrate the processes of parameter reductions.

Traffic congestion is a major problem in megacities which increases vehicle emissions and degrades ambient air quality. Various models have been developed to address the universal features of traffic jams. These models range from micro car-following models to macro collective dynamic models. Here, we study the macrostructure of congested traffic influenced by the complex geometry of the commute. Our main focus is on the dynamics of traffic patterns in Paris, and Los Angeles each with distinct urban structures. We analyze the complexity of the giant traffic clusters based on a percolation framework during rush hours in the mornings, evenings, and holidays. We uncover that the universality described by several critical exponents of traffic patterns is highly correlated with the geometry of commute and the underlying urban structure. Our findings might have broad implications for developing a greener, healthier, and more sustainable future city.

We combine the recent relaxation approach with multiderivative Runge-Kutta methods to preserve conservation or dissipation of entropy functionals for ordinary and partial differential equations. Relaxation methods are minor modifications of explicit and implicit schemes, requiring only the solution of a single scalar equation per time step in addition to the baseline scheme. We demonstrate the robustness of the resulting methods for a range of test problems including the 3D compressible Euler equations. In particular, we point out improved error growth rates for certain entropy-conservative problems including nonlinear dispersive wave equations.

Block majorization-minimization (BMM) is a simple iterative algorithm for nonconvex constrained optimization that sequentially minimizes majorizing surrogates of the objective function in each block coordinate while the other coordinates are held fixed. BMM entails a large class of optimization algorithms such as block coordinate descent and its proximal-point variant, expectation-minimization, and block projected gradient descent. We establish that for general constrained nonconvex optimization, BMM with strongly convex surrogates can produce an $\epsilon$-stationary point within $O(\epsilon^{-2}(\log \epsilon^{-1})^{2})$ iterations and asymptotically converges to the set of stationary points. Furthermore, we propose a trust-region variant of BMM that can handle surrogates that are only convex and still obtain the same iteration complexity and asymptotic stationarity. These results hold robustly even when the convex sub-problems are inexactly solved as long as the optimality gaps are summable. As an application, we show that a regularized version of the celebrated multiplicative update algorithm for nonnegative matrix factorization by Lee and Seung has iteration complexity of $O(\epsilon^{-2}(\log \epsilon^{-1})^{2})$. The same result holds for a wide class of regularized nonnegative tensor decomposition algorithms as well as the classical block projected gradient descent algorithm. These theoretical results are validated through various numerical experiments.

This is the second in a series of articles aimed at exploring the relationship between the complexity classes of P and NP. The research in this article aims to find conditions of an algorithmic nature that are necessary and sufficient to transform any Boolean function in conjunctive normal form into a specific form that guarantees the satisfiability of this function. To find such conditions, we use the concept of a special covering of a set introduced in [13], and investigate the connection between this concept and the notion of satisfiability of Boolean functions. As shown, the problem of existence of a special covering for a set is equivalent to the Boolean satisfiability problem. Thus, an important result is the proof of the existence of necessary and sufficient conditions that make it possible to find out if there is a special covering for the set under the special decomposition. This result allows us to formulate the necessary and sufficient algorithmic conditions for Boolean satisfiability, considering the function in conjunctive normal form as a set of clauses. In parallel, as a result of the aforementioned algorithmic procedure, we obtain the values of the variables that ensure the satisfiability of this function. The terminology used related to graph theory, set theory, Boolean functions and complexity theory is consistent with the terminology in [1], [2], [3], [4]. The newly introduced terms are not found in use by other authors and do not contradict to other terms.

北京阿比特科技有限公司