Mobile-phone advertising enables marketers to reach customers at a personal level and it enables the measure of costumers reaction by novel approaches, in real time, and at scale. By keeping a device anonymous, we can deliver custom adverts and we can check when the device owner will visit a specific mortar-and-brick location. This is the first step in a sale. By measuring visits and sales, the original marketers can determine their return on advertising and they can prove the efficacy of the marketing investments. We turn our attention to the measure of lift: we define it as the visit acceleration during the campaign flight with respect to a controlled baseline. We present a theoretical description; we describe a general and a simplified approach in composing the exposed and the control baseline; we develop two different vertical approaches with different comparable solutions; finally, we present how to carry the experiments and the measures for a few dozens campaigns; these campaigns range from hundred thousands devices and counting a few hundred visits to a handful locations, to sixty million devices and counting million visits to thousands locations. We care about experiments at scale.
There is a growing recognition of the need for a transformation from organizational security awareness programs focused on compliance -- measured by training completion rates -- to those resulting in behavior change. However, few prior studies have begun to unpack the organizational practices of the security awareness teams tasked with executing program transformation. We conducted a year-long case study of a security awareness program in a United States (U.S.) government agency, collecting data via field observations, interviews, and documents. Our findings reveal the challenges and practices involved in the progression of a security awareness program from being compliance-focused to emphasizing impact on workforce attitudes and behaviors. We uniquely capture transformational organizational security awareness practices in action via a longitudinal study involving multiple workforce perspectives. Our study insights can serve as a resource for other security awareness programs and workforce development initiatives aimed at better defining the security awareness work role.
Accurate dietary intake estimation is critical for informing policies and programs to support healthy eating, as malnutrition has been directly linked to decreased quality of life. However self-reporting methods such as food diaries suffer from substantial bias. Other conventional dietary assessment techniques and emerging alternative approaches such as mobile applications incur high time costs and may necessitate trained personnel. Recent work has focused on using computer vision and machine learning to automatically estimate dietary intake from food images, but the lack of comprehensive datasets with diverse viewpoints, modalities and food annotations hinders the accuracy and realism of such methods. To address this limitation, we introduce NutritionVerse-Synth, the first large-scale dataset of 84,984 photorealistic synthetic 2D food images with associated dietary information and multimodal annotations (including depth images, instance masks, and semantic masks). Additionally, we collect a real image dataset, NutritionVerse-Real, containing 889 images of 251 dishes to evaluate realism. Leveraging these novel datasets, we develop and benchmark NutritionVerse, an empirical study of various dietary intake estimation approaches, including indirect segmentation-based and direct prediction networks. We further fine-tune models pretrained on synthetic data with real images to provide insights into the fusion of synthetic and real data. Finally, we release both datasets (NutritionVerse-Synth, NutritionVerse-Real) on //www.kaggle.com/nutritionverse/datasets as part of an open initiative to accelerate machine learning for dietary sensing.
The heterogeneity of use cases that next-generation wireless systems need to support calls for flexible and programmable networks that can autonomously adapt to the application requirements. Specifically, traffic flows that support critical applications (e.g., vehicular control or safety communications) often come with a requirement in terms of guaranteed performance. At the same time, others are more elastic and can adapt to the resources made available by the network (e.g., video streaming). To this end, the Open Radio Access Network (RAN) paradigm is seen as an enabler of dynamic control and adaptation of the protocol stack of 3rd Generation Partnership Project (3GPP) networks in the 5th Generation (5G) and beyond. Through its embodiment in the O-RAN alliance specifications, it introduces the Ran Intelligent Controllers (RICs), which enable closed-loop control, leveraging a rich set of RAN Key Performance Measurements (KPMs) to build a representation of the network and enforcing dynamic control through the configuration of 3GPP-defined stack parameters. In this paper, we leverage the Open RAN closed-loop control capabilities to design, implement, and evaluate multiple data-driven and dynamic Service Level Agreement (SLA) enforcement policies, capable of adapting the RAN semi-persistent scheduling patterns to match users requirements. To do so, we implement semi-persistent scheduling capabilities in the OpenAirInterface (OAI) 5G stack, as well as an easily extensible and customizable version of the Open RAN E2 interface that connects the OAI base stations to the near-real-time RIC. We deploy and test our framework on Colosseum, a large-scale hardware-in-the-loop channel emulator. Results confirm the effectiveness of the proposed Open RAN-based solution in managing SLA in near-real-time.
Recent work in algorithmic fairness has highlighted the challenge of defining racial categories for the purposes of anti-discrimination. These challenges are not new but have previously fallen to the state, which enacts race through government statistics, policies, and evidentiary standards in anti-discrimination law. Drawing on the history of state race-making, we examine how longstanding questions about the nature of race and discrimination appear within the algorithmic fairness literature. Through a content analysis of 60 papers published at FAccT between 2018 and 2020, we analyze how race is conceptualized and formalized in algorithmic fairness frameworks. We note that differing notions of race are adopted inconsistently, at times even within a single analysis. We also explore the institutional influences and values associated with these choices. While we find that categories used in algorithmic fairness work often echo legal frameworks, we demonstrate that values from academic computer science play an equally important role in the construction of racial categories. Finally, we examine the reasoning behind different operationalizations of race, finding that few papers explicitly describe their choices and even fewer justify them. We argue that the construction of racial categories is a value-laden process with significant social and political consequences for the project of algorithmic fairness. The widespread lack of justification around the operationalization of race reflects institutional norms that allow these political decisions to remain obscured within the backstage of knowledge production.
Modern recommender systems lie at the heart of complex ecosystems that couple the behavior of users, content providers, advertisers, and other actors. Despite this, the focus of the majority of recommender research -- and most practical recommenders of any import -- is on the local, myopic optimization of the recommendations made to individual users. This comes at a significant cost to the long-term utility that recommenders could generate for its users. We argue that explicitly modeling the incentives and behaviors of all actors in the system -- and the interactions among them induced by the recommender's policy -- is strictly necessary if one is to maximize the value the system brings to these actors and improve overall ecosystem "health". Doing so requires: optimization over long horizons using techniques such as reinforcement learning; making inevitable tradeoffs in the utility that can be generated for different actors using the methods of social choice; reducing information asymmetry, while accounting for incentives and strategic behavior, using the tools of mechanism design; better modeling of both user and item-provider behaviors by incorporating notions from behavioral economics and psychology; and exploiting recent advances in generative and foundation models to make these mechanisms interpretable and actionable. We propose a conceptual framework that encompasses these elements, and articulate a number of research challenges that emerge at the intersection of these different disciplines.
Believable proxies of human behavior can empower interactive applications ranging from immersive environments to rehearsal spaces for interpersonal communication to prototyping tools. In this paper, we introduce generative agents--computational software agents that simulate believable human behavior. Generative agents wake up, cook breakfast, and head to work; artists paint, while authors write; they form opinions, notice each other, and initiate conversations; they remember and reflect on days past as they plan the next day. To enable generative agents, we describe an architecture that extends a large language model to store a complete record of the agent's experiences using natural language, synthesize those memories over time into higher-level reflections, and retrieve them dynamically to plan behavior. We instantiate generative agents to populate an interactive sandbox environment inspired by The Sims, where end users can interact with a small town of twenty five agents using natural language. In an evaluation, these generative agents produce believable individual and emergent social behaviors: for example, starting with only a single user-specified notion that one agent wants to throw a Valentine's Day party, the agents autonomously spread invitations to the party over the next two days, make new acquaintances, ask each other out on dates to the party, and coordinate to show up for the party together at the right time. We demonstrate through ablation that the components of our agent architecture--observation, planning, and reflection--each contribute critically to the believability of agent behavior. By fusing large language models with computational, interactive agents, this work introduces architectural and interaction patterns for enabling believable simulations of human behavior.
The advent of large language models marks a revolutionary breakthrough in artificial intelligence. With the unprecedented scale of training and model parameters, the capability of large language models has been dramatically improved, leading to human-like performances in understanding, language synthesizing, and common-sense reasoning, etc. Such a major leap-forward in general AI capacity will change the pattern of how personalization is conducted. For one thing, it will reform the way of interaction between humans and personalization systems. Instead of being a passive medium of information filtering, large language models present the foundation for active user engagement. On top of such a new foundation, user requests can be proactively explored, and user's required information can be delivered in a natural and explainable way. For another thing, it will also considerably expand the scope of personalization, making it grow from the sole function of collecting personalized information to the compound function of providing personalized services. By leveraging large language models as general-purpose interface, the personalization systems may compile user requests into plans, calls the functions of external tools to execute the plans, and integrate the tools' outputs to complete the end-to-end personalization tasks. Today, large language models are still being developed, whereas the application in personalization is largely unexplored. Therefore, we consider it to be the right time to review the challenges in personalization and the opportunities to address them with LLMs. In particular, we dedicate this perspective paper to the discussion of the following aspects: the development and challenges for the existing personalization system, the newly emerged capabilities of large language models, and the potential ways of making use of large language models for personalization.
Knowledge graph embedding (KGE) is a increasingly popular technique that aims to represent entities and relations of knowledge graphs into low-dimensional semantic spaces for a wide spectrum of applications such as link prediction, knowledge reasoning and knowledge completion. In this paper, we provide a systematic review of existing KGE techniques based on representation spaces. Particularly, we build a fine-grained classification to categorise the models based on three mathematical perspectives of the representation spaces: (1) Algebraic perspective, (2) Geometric perspective, and (3) Analytical perspective. We introduce the rigorous definitions of fundamental mathematical spaces before diving into KGE models and their mathematical properties. We further discuss different KGE methods over the three categories, as well as summarise how spatial advantages work over different embedding needs. By collating the experimental results from downstream tasks, we also explore the advantages of mathematical space in different scenarios and the reasons behind them. We further state some promising research directions from a representation space perspective, with which we hope to inspire researchers to design their KGE models as well as their related applications with more consideration of their mathematical space properties.
This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.
Stickers with vivid and engaging expressions are becoming increasingly popular in online messaging apps, and some works are dedicated to automatically select sticker response by matching text labels of stickers with previous utterances. However, due to their large quantities, it is impractical to require text labels for the all stickers. Hence, in this paper, we propose to recommend an appropriate sticker to user based on multi-turn dialog context history without any external labels. Two main challenges are confronted in this task. One is to learn semantic meaning of stickers without corresponding text labels. Another challenge is to jointly model the candidate sticker with the multi-turn dialog context. To tackle these challenges, we propose a sticker response selector (SRS) model. Specifically, SRS first employs a convolutional based sticker image encoder and a self-attention based multi-turn dialog encoder to obtain the representation of stickers and utterances. Next, deep interaction network is proposed to conduct deep matching between the sticker with each utterance in the dialog history. SRS then learns the short-term and long-term dependency between all interaction results by a fusion network to output the the final matching score. To evaluate our proposed method, we collect a large-scale real-world dialog dataset with stickers from one of the most popular online chatting platform. Extensive experiments conducted on this dataset show that our model achieves the state-of-the-art performance for all commonly-used metrics. Experiments also verify the effectiveness of each component of SRS. To facilitate further research in sticker selection field, we release this dataset of 340K multi-turn dialog and sticker pairs.