There has been significant progress in Masked Image Modeling (MIM). Existing MIM methods can be broadly categorized into two groups based on the reconstruction target: pixel-based and tokenizer-based approaches. The former offers a simpler pipeline and lower computational cost, but it is known to be biased toward high-frequency details. In this paper, we provide a set of empirical studies to confirm this limitation of pixel-based MIM and propose a new method that explicitly utilizes low-level features from shallow layers to aid pixel reconstruction. By incorporating this design into our base method, MAE, we reduce the wasted modeling capability of pixel-based MIM, improving its convergence and achieving non-trivial improvements across various downstream tasks. To the best of our knowledge, we are the first to systematically investigate multi-level feature fusion for isotropic architectures like the standard Vision Transformer (ViT). Notably, when applied to a smaller model (e.g., ViT-S), our method yields significant performance gains, such as 1.2\% on fine-tuning, 2.8\% on linear probing, and 2.6\% on semantic segmentation. Code and models are available at //github.com/open-mmlab/mmpretrain.
Deep Gaussian Process (DGP) models offer a powerful nonparametric approach for Bayesian inference, but exact inference is typically intractable, motivating the use of various approximations. However, existing approaches, such as mean-field Gaussian assumptions, limit the expressiveness and efficacy of DGP models, while stochastic approximation can be computationally expensive. To tackle these challenges, we introduce Neural Operator Variational Inference (NOVI) for Deep Gaussian Processes. NOVI uses a neural generator to obtain a sampler and minimizes the Regularized Stein Discrepancy in L2 space between the generated distribution and true posterior. We solve the minimax problem using Monte Carlo estimation and subsampling stochastic optimization techniques. We demonstrate that the bias introduced by our method can be controlled by multiplying the Fisher divergence with a constant, which leads to robust error control and ensures the stability and precision of the algorithm. Our experiments on datasets ranging from hundreds to tens of thousands demonstrate the effectiveness and the faster convergence rate of the proposed method. We achieve a classification accuracy of 93.56 on the CIFAR10 dataset, outperforming SOTA Gaussian process methods. Furthermore, our method guarantees theoretically controlled prediction error for DGP models and demonstrates remarkable performance on various datasets. We are optimistic that NOVI has the potential to enhance the performance of deep Bayesian nonparametric models and could have significant implications for various practical applications
The use of Implicit Neural Representation (INR) through a hash-table has demonstrated impressive effectiveness and efficiency in characterizing intricate signals. However, current state-of-the-art methods exhibit insufficient regularization, often yielding unreliable and noisy results during interpolations. We find that this issue stems from broken gradient flow between input coordinates and indexed hash-keys, where the chain rule attempts to model discrete hash-keys, rather than the continuous coordinates. To tackle this concern, we introduce RHINO, in which a continuous analytical function is incorporated to facilitate regularization by connecting the input coordinate and the network additionally without modifying the architecture of current hash-based INRs. This connection ensures a seamless backpropagation of gradients from the network's output back to the input coordinates, thereby enhancing regularization. Our experimental results not only showcase the broadened regularization capability across different hash-based INRs like DINER and Instant NGP, but also across a variety of tasks such as image fitting, representation of signed distance functions, and optimization of 5D static / 6D dynamic neural radiance fields. Notably, RHINO outperforms current state-of-the-art techniques in both quality and speed, affirming its superiority.
The emergence of Tiny Machine Learning (TinyML) has positively revolutionized the field of Artificial Intelligence by promoting the joint design of resource-constrained IoT hardware devices and their learning-based software architectures. TinyML carries an essential role within the fourth and fifth industrial revolutions in helping societies, economies, and individuals employ effective AI-infused computing technologies (e.g., smart cities, automotive, and medical robotics). Given its multidisciplinary nature, the field of TinyML has been approached from many different angles: this comprehensive survey wishes to provide an up-to-date overview focused on all the learning algorithms within TinyML-based solutions. The survey is based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodological flow, allowing for a systematic and complete literature survey. In particular, firstly we will examine the three different workflows for implementing a TinyML-based system, i.e., ML-oriented, HW-oriented, and co-design. Secondly, we propose a taxonomy that covers the learning panorama under the TinyML lens, examining in detail the different families of model optimization and design, as well as the state-of-the-art learning techniques. Thirdly, this survey will present the distinct features of hardware devices and software tools that represent the current state-of-the-art for TinyML intelligent edge applications. Finally, we discuss the challenges and future directions.
Factorized Databases (FDBs) and the recently introduced Path Multiset Representations (PMRs) both aim at compactly representing results of database queries, and are quite different at first sight. FDBs were developed for the relational database model and represent finite sets of tuples, all of which have the same length. PMRs, on the other hand, were developed for the graph database model and represent possibly infinite multisets of variable-length paths. In this paper, we connect both representations to a common framework that is rooted in formal language theory. In particular, we show why FDBs are a special case of context-free grammars, which allows us to generalize FDBs beyond the standard setting of database relations. Taking into account that PMRs and finite automata are closely connected, this opens up a wide range of questions about tradeoffs between their respective size and the efficiency of query-plan operations on automata/grammar based representations. As a first step, we present here first results on size trade-offs between fundamental variants of automata-based and grammar-based compact representations.
Graph Convolutional Networks (GCNs) has demonstrated promising results for recommender systems, as they can effectively leverage high-order relationship. However, these methods usually encounter data sparsity issue in real-world scenarios. To address this issue, GCN-based recommendation methods employ contrastive learning to introduce self-supervised signals. Despite their effectiveness, these methods lack consideration of the significant degree disparity between head and tail nodes. This can lead to non-uniform representation distribution, which is a crucial factor for the performance of contrastive learning methods. To tackle the above issue, we propose a novel Long-tail Augmented Graph Contrastive Learning (LAGCL) method for recommendation. Specifically, we introduce a learnable long-tail augmentation approach to enhance tail nodes by supplementing predicted neighbor information, and generate contrastive views based on the resulting augmented graph. To make the data augmentation schema learnable, we design an auto drop module to generate pseudo-tail nodes from head nodes and a knowledge transfer module to reconstruct the head nodes from pseudo-tail nodes. Additionally, we employ generative adversarial networks to ensure that the distribution of the generated tail/head nodes matches that of the original tail/head nodes. Extensive experiments conducted on three benchmark datasets demonstrate the significant improvement in performance of our model over the state-of-the-arts. Further analyses demonstrate the uniformity of learned representations and the superiority of LAGCL on long-tail performance. Code is publicly available at //github.com/im0qianqian/LAGCL
Recently, Large Language Models (LLMs) have achieved amazing zero-shot learning performance over a variety of Natural Language Processing (NLP) tasks, especially for text generative tasks. Yet, the large size of LLMs often leads to the high computational cost of model training and online deployment. In our work, we present ALTER, a system that effectively builds the multi-tAsk Learners with mixTure-of-task-adaptERs upon small language models (with <1B parameters) to address multiple NLP tasks simultaneously, capturing the commonalities and differences between tasks, in order to support domain-specific applications. Specifically, in ALTER, we propose the Mixture-of-Task-Adapters (MTA) module as an extension to the transformer architecture for the underlying model to capture the intra-task and inter-task knowledge. A two-stage training method is further proposed to optimize the collaboration between adapters at a small computational cost. Experimental results over a mixture of NLP tasks show that our proposed MTA architecture and the two-stage training method achieve good performance. Based on ALTER, we have also produced MTA-equipped language models for various domains.
Fully Homomorphic Encryption (FHE) enables the processing of encrypted data without decrypting it. FHE has garnered significant attention over the past decade as it supports secure outsourcing of data processing to remote cloud services. Despite its promise of strong data privacy and security guarantees, FHE introduces a slowdown of up to five orders of magnitude as compared to the same computation using plaintext data. This overhead is presently a major barrier to the commercial adoption of FHE. In this work, we leverage GPUs to accelerate FHE, capitalizing on a well-established GPU ecosystem available in the cloud. We propose GME, which combines three key microarchitectural extensions along with a compile-time optimization to the current AMD CDNA GPU architecture. First, GME integrates a lightweight on-chip compute unit (CU)-side hierarchical interconnect to retain ciphertext in cache across FHE kernels, thus eliminating redundant memory transactions. Second, to tackle compute bottlenecks, GME introduces special MOD-units that provide native custom hardware support for modular reduction operations, one of the most commonly executed sets of operations in FHE. Third, by integrating the MOD-unit with our novel pipelined $64$-bit integer arithmetic cores (WMAC-units), GME further accelerates FHE workloads by $19\%$. Finally, we propose a Locality-Aware Block Scheduler (LABS) that exploits the temporal locality available in FHE primitive blocks. Incorporating these microarchitectural features and compiler optimizations, we create a synergistic approach achieving average speedups of $796\times$, $14.2\times$, and $2.3\times$ over Intel Xeon CPU, NVIDIA V100 GPU, and Xilinx FPGA implementations, respectively.
Interest in the field of Explainable Artificial Intelligence has been growing for decades and has accelerated recently. As Artificial Intelligence models have become more complex, and often more opaque, with the incorporation of complex machine learning techniques, explainability has become more critical. Recently, researchers have been investigating and tackling explainability with a user-centric focus, looking for explanations to consider trustworthiness, comprehensibility, explicit provenance, and context-awareness. In this chapter, we leverage our survey of explanation literature in Artificial Intelligence and closely related fields and use these past efforts to generate a set of explanation types that we feel reflect the expanded needs of explanation for today's artificial intelligence applications. We define each type and provide an example question that would motivate the need for this style of explanation. We believe this set of explanation types will help future system designers in their generation and prioritization of requirements and further help generate explanations that are better aligned to users' and situational needs.
We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.
Attention mechanism has been used as an ancillary means to help RNN or CNN. However, the Transformer (Vaswani et al., 2017) recently recorded the state-of-the-art performance in machine translation with a dramatic reduction in training time by solely using attention. Motivated by the Transformer, Directional Self Attention Network (Shen et al., 2017), a fully attention-based sentence encoder, was proposed. It showed good performance with various data by using forward and backward directional information in a sentence. But in their study, not considered at all was the distance between words, an important feature when learning the local dependency to help understand the context of input text. We propose Distance-based Self-Attention Network, which considers the word distance by using a simple distance mask in order to model the local dependency without losing the ability of modeling global dependency which attention has inherent. Our model shows good performance with NLI data, and it records the new state-of-the-art result with SNLI data. Additionally, we show that our model has a strength in long sentences or documents.