亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this work, we take a first step towards designing summarization systems that are faithful to the author's opinions and perspectives. Focusing on a case study of preserving political perspectives in news summarization, we find that existing approaches alter the political opinions and stances of news articles in more than 50% of summaries, misrepresenting the intent and perspectives of the news authors. We thus propose P^3Sum, a diffusion model-based summarization approach controlled by political perspective classifiers. In P^3Sum, the political leaning of a generated summary is iteratively evaluated at each decoding step, and any drift from the article's original stance incurs a loss back-propagated to the embedding layers, steering the political stance of the summary at inference time. Extensive experiments on three news summarization datasets demonstrate that P^3Sum outperforms state-of-the-art summarization systems and large language models by up to 11.4% in terms of the success rate of stance preservation, with on-par performance on standard summarization utility metrics. These findings highlight the lacunae that even for state-of-the-art models it is still challenging to preserve author perspectives in news summarization, while P^3Sum presents an important first step towards evaluating and developing summarization systems that are faithful to author intent and perspectives.

相關內容

Distance measures between graphs are important primitives for a variety of learning tasks. In this work, we describe an unsupervised, optimal transport based approach to define a distance between graphs. Our idea is to derive representations of graphs as Gaussian mixture models, fitted to distributions of sampled node embeddings over the same space. The Wasserstein distance between these Gaussian mixture distributions then yields an interpretable and easily computable distance measure, which can further be tailored for the comparison at hand by choosing appropriate embeddings. We propose two embeddings for this framework and show that under certain assumptions about the shape of the resulting Gaussian mixture components, further computational improvements of this Wasserstein distance can be achieved. An empirical validation of our findings on synthetic data and real-world Functional Brain Connectivity networks shows promising performance compared to existing embedding methods.

While working on a software specification, designers usually need to evaluate different architectural alternatives to be sure that quality criteria are met. Even when these quality aspects could be expressed in terms of multiple software metrics, other qualitative factors cannot be numerically measured, but they are extracted from the engineer's know-how and prior experiences. In fact, detecting not only strong but also weak points in the different solutions seems to fit better with the way humans make their decisions. Putting the human in the loop brings new challenges to the search-based software engineering field, especially for those human-centered activities within the early analysis phase. This paper explores how the interactive evolutionary computation can serve as a basis for integrating the human's judgment into the search process. An interactive approach is proposed to discover software architectures, in which both quantitative and qualitative criteria are applied to guide a multi-objective evolutionary algorithm. The obtained feedback is incorporated into the fitness function using architectural preferences allowing the algorithm to discern between promising and poor solutions. Experimentation with real users has revealed that the proposed interaction mechanism can effectively guide the search towards those regions of the search space that are of real interest to the expert.

In this study, we present a deep learning framework designed to integrate with our previously developed system that facilitates large-scale 1D fetal Doppler data collection, aiming to enhance data quality. This system, tailored for traditional Indigenous midwives in low-resource communities, leverages a cost-effective Android phone to improve the quality of recorded signals. We have shown that the Doppler data can be used to identify fetal growth restriction, hypertension, and other concerning issues during pregnancy. However, the quality of the signal is dependent on many factors, including radio frequency interference, position of the fetus, maternal body habitus, and usage of the Doppler by the birth attendants. In order to provide instant feedback to allow correction of the data at source, a signal quality metric is required that can run in real-time on the mobile phone. In this study, 191 DUS signals with durations mainly in the range between 5 to 10 minutes were evaluated for quality and classified into five categories: Good, Poor, (Radiofrequency) Interference, Talking, and Silent, at a resolution of 3.75 seconds. A deep neural network was trained on each 3.75-second segment from these recordings and validated using five-fold cross-validation. An average micro F1 = 97.4\% and macro F1 = 94.2\% were achieved, with F1 = 99.2\% for `Good' quality data. These results indicate that the algorithm, which will now be implemented in the midwives' app, should allow a significant increase in the quality of data at the time of capture.

In this paper, we study underlay device-to-device (D2D) communication systems empowered by a reconfigurable intelligent surface (RIS) for cognitive cellular networks. Considering Rayleigh fading channels and the general case where there exist both the direct and RIS-enabled D2D channels, the outage probability (OP) of the D2D communication link is presented in closed-form. Next, for the considered RIS-empowered underlaid D2D system, we frame an OP minimization problem. We target the joint optimization of the transmit power at the D2D source and the RIS placement, under constraints on the transmit power at the D2D source and on the limited interference imposed on the cellular user for two RIS deployment topologies. Due to the coupled optimization variables, the formulated optimization problem is extremely intractable. We propose an equivalent transformation which we are able to solve analytically. In the transformed problem, an expression for the average value of the signal-to-interference-noise ratio (SINR) at the D2D receiver is derived in closed-form. Our theoretical derivations are corroborated through simulation results, and various system design insights are deduced. It is indicatively showcased that the proposed RIS-empowered underlaid D2D system design outperforms the benchmark semi-adaptive optimal power and optimal distance schemes, offering $44\%$ and $20\%$ performance improvement, respectively.

Socially assistive robots (SARs) have shown great promise in supplementing and augmenting interventions to support the physical and mental well-being of older adults. However, past work has not yet explored the potential of applying SAR to lower the barriers of long-term low vision rehabilitation (LVR) interventions for older adults. In this work, we present a user-informed design process to validate the motivation and identify major design principles for developing SAR for long-term LVR. To evaluate user-perceived usefulness and acceptance of SAR in this novel domain, we performed a two-phase study through user surveys. First, a group (n=38) of older adults with LV completed a mailed-in survey. Next, a new group (n=13) of older adults with LV saw an in-clinic SAR demo and then completed the survey. The study participants reported that SARs would be useful, trustworthy, easy to use, and enjoyable while providing socio-emotional support to augment LVR interventions. The in-clinic demo group reported significantly more positive opinions of the SAR's capabilities than did the baseline survey group that used mailed-in forms without the SAR demo.

In this paper we show how tensor networks help in developing explainability of machine learning algorithms. Specifically, we develop an unsupervised clustering algorithm based on Matrix Product States (MPS) and apply it in the context of a real use-case of adversary-generated threat intelligence. Our investigation proves that MPS rival traditional deep learning models such as autoencoders and GANs in terms of performance, while providing much richer model interpretability. Our approach naturally facilitates the extraction of feature-wise probabilities, Von Neumann Entropy, and mutual information, offering a compelling narrative for classification of anomalies and fostering an unprecedented level of transparency and interpretability, something fundamental to understand the rationale behind artificial intelligence decisions.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

How can we estimate the importance of nodes in a knowledge graph (KG)? A KG is a multi-relational graph that has proven valuable for many tasks including question answering and semantic search. In this paper, we present GENI, a method for tackling the problem of estimating node importance in KGs, which enables several downstream applications such as item recommendation and resource allocation. While a number of approaches have been developed to address this problem for general graphs, they do not fully utilize information available in KGs, or lack flexibility needed to model complex relationship between entities and their importance. To address these limitations, we explore supervised machine learning algorithms. In particular, building upon recent advancement of graph neural networks (GNNs), we develop GENI, a GNN-based method designed to deal with distinctive challenges involved with predicting node importance in KGs. Our method performs an aggregation of importance scores instead of aggregating node embeddings via predicate-aware attention mechanism and flexible centrality adjustment. In our evaluation of GENI and existing methods on predicting node importance in real-world KGs with different characteristics, GENI achieves 5-17% higher NDCG@100 than the state of the art.

In this paper, we propose a deep reinforcement learning framework called GCOMB to learn algorithms that can solve combinatorial problems over large graphs. GCOMB mimics the greedy algorithm in the original problem and incrementally constructs a solution. The proposed framework utilizes Graph Convolutional Network (GCN) to generate node embeddings that predicts the potential nodes in the solution set from the entire node set. These embeddings enable an efficient training process to learn the greedy policy via Q-learning. Through extensive evaluation on several real and synthetic datasets containing up to a million nodes, we establish that GCOMB is up to 41% better than the state of the art, up to seven times faster than the greedy algorithm, robust and scalable to large dynamic networks.

Machine learning techniques have deeply rooted in our everyday life. However, since it is knowledge- and labor-intensive to pursue good learning performance, human experts are heavily involved in every aspect of machine learning. In order to make machine learning techniques easier to apply and reduce the demand for experienced human experts, automated machine learning (AutoML) has emerged as a hot topic with both industrial and academic interest. In this paper, we provide an up to date survey on AutoML. First, we introduce and define the AutoML problem, with inspiration from both realms of automation and machine learning. Then, we propose a general AutoML framework that not only covers most existing approaches to date but also can guide the design for new methods. Subsequently, we categorize and review the existing works from two aspects, i.e., the problem setup and the employed techniques. Finally, we provide a detailed analysis of AutoML approaches and explain the reasons underneath their successful applications. We hope this survey can serve as not only an insightful guideline for AutoML beginners but also an inspiration for future research.

北京阿比特科技有限公司