亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we propose Emotionally paired Music and Image Dataset (EMID), a novel dataset designed for the emotional matching of music and images, to facilitate auditory-visual cross-modal tasks such as generation and retrieval. Unlike existing approaches that primarily focus on semantic correlations or roughly divided emotional relations, EMID emphasizes the significance of emotional consistency between music and images using an advanced 13-dimension emotional model. By incorporating emotional alignment into the dataset, it aims to establish pairs that closely align with human perceptual understanding, thereby raising the performance of auditory-visual cross-modal tasks. We also design a supplemental module named EMI-Adapter to optimize existing cross-modal alignment methods. To validate the effectiveness of the EMID, we conduct a psychological experiment, which has demonstrated that considering the emotional relationship between the two modalities effectively improves the accuracy of matching in abstract perspective. This research lays the foundation for future cross-modal research in domains such as psychotherapy and contributes to advancing the understanding and utilization of emotions in cross-modal alignment. The EMID dataset is available at //github.com/ecnu-aigc/EMID.

相關內容

數據集,又稱為資料集、數據集合或資料集合,是一種由數據所組成的集合。
 Data set(或dataset)是一個數據的集合,通常以表格形式出現。每一列代表一個特定變量。每一行都對應于某一成員的數據集的問題。它列出的價值觀為每一個變量,如身高和體重的一個物體或價值的隨機數。每個數值被稱為數據資料。對應于行數,該數據集的數據可能包括一個或多個成員。

This paper proposes a novel diffusion-based model, CompoDiff, for solving Composed Image Retrieval (CIR) with latent diffusion and presents a newly created dataset, named SynthTriplets18M, of 18 million reference images, conditions, and corresponding target image triplets to train the model. CompoDiff and SynthTriplets18M tackle the shortages of the previous CIR approaches, such as poor generalizability due to the small dataset scale and the limited types of conditions. CompoDiff not only achieves a new zero-shot state-of-the-art on four CIR benchmarks, including FashionIQ, CIRR, CIRCO, and GeneCIS, but also enables a more versatile and controllable CIR by accepting various conditions, such as negative text and image mask conditions, and the controllability to the importance between multiple queries or the trade-off between inference speed and the performance which are unavailable with existing CIR methods. The code and dataset are available at //github.com/navervision/CompoDiff

By Fagin's Theorem, NP contains precisely those problems that can be described by formulas starting with an existential second-order quantifier, followed by only first-order quantifiers (ESO formulas). Subsequent research refined this result, culminating in powerful theorems that characterize for each possible sequence of first-order quantifiers how difficult the described problem can be. We transfer this line of inquiry to the parameterized setting, where the size of the set quantified by the second-order quantifier is the parameter. Many natural parameterized problems can be described in this way using simple sequences of first-order quantifiers: For the clique or vertex cover problems, two universal first-order quantifiers suffice ("for all pairs of vertices ... must hold"); for the dominating set problem, a universal followed by an existential quantifier suffice ("for all vertices, there is a vertex such that ..."); and so on. We present a complete characterization that states for each possible sequence of first-order quantifiers how high the parameterized complexity of the described problems can be. The uncovered dividing line between quantifier sequences that lead to tractable versus intractable problems is distinct from that known from the classical setting, and it depends on whether the parameter is a lower bound on, an upper bound on, or equal to the size of the quantified set.

In this paper we introduce a novel quantifier elimination method for conjunctions of linear real arithmetic constraints. Our algorithm is based on the Fourier-Motzkin variable elimination procedure, but by case splitting we are able to reduce the worst-case complexity from doubly to singly exponential. The adaption of the procedure for SMT solving has strong correspondence to the simplex algorithm, therefore we name it FMplex. Besides the theoretical foundations, we provide an experimental evaluation in the context of SMT solving.

In this paper, we present a synthetic thermal imaging dataset for Person Detection in Intrusion Warning Systems (PDIWS). The dataset consists of a training set with 2000 images and a test set with 500 images. Each image is synthesized by compounding a subject (intruder) with a background using the modified Poisson image editing method. There are a total of 50 different backgrounds and nearly 1000 subjects divided into five classes according to five human poses: creeping, crawling, stooping, climbing and other. The presence of the intruder will be confirmed if the first four poses are detected. Advanced object detection algorithms have been implemented with this dataset and give relatively satisfactory results, with the highest mAP values of 95.5% and 90.9% for IoU of 0.5 and 0.75 respectively. The dataset is freely published online for research purposes at //github.com/thuan-researcher/Intruder-Thermal-Dataset.

Triangular meshes are a widely used representation in the field of 3D modeling. In this paper, we present a novel approach for edge length-based linear subdivision on triangular meshes, along with two auxiliary techniques. We conduct a comprehensive comparison of different subdivision methods in terms of computational capabilities and mesh-enhancing abilities. Our proposed approach demonstrates improved computational efficiency and generates fewer elements with higher quality compared to existing methods. The improvement in computational efficiency and mesh augmentation capability of our method is further enhanced when working with the two auxiliary techniques presented in this paper. Our novel strategy represents a significant contribution to the field and has important implications for local mesh refinement, computer-aided design, and isotropic remeshing.

We present CrossLoc3D, a novel 3D place recognition method that solves a large-scale point matching problem in a cross-source setting. Cross-source point cloud data corresponds to point sets captured by depth sensors with different accuracies or from different distances and perspectives. We address the challenges in terms of developing 3D place recognition methods that account for the representation gap between points captured by different sources. Our method handles cross-source data by utilizing multi-grained features and selecting convolution kernel sizes that correspond to most prominent features. Inspired by the diffusion models, our method uses a novel iterative refinement process that gradually shifts the embedding spaces from different sources to a single canonical space for better metric learning. In addition, we present CS-Campus3D, the first 3D aerial-ground cross-source dataset consisting of point cloud data from both aerial and ground LiDAR scans. The point clouds in CS-Campus3D have representation gaps and other features like different views, point densities, and noise patterns. We show that our CrossLoc3D algorithm can achieve an improvement of 4.74% - 15.37% in terms of the top 1 average recall on our CS-Campus3D benchmark and achieves performance comparable to state-of-the-art 3D place recognition method on the Oxford RobotCar. The code and CS-CAMPUS3D benchmark will be available at github.com/rayguan97/crossloc3d.

COMpression with Bayesian Implicit NEural Representations (COMBINER) is a recent data compression method that addresses a key inefficiency of previous Implicit Neural Representation (INR)-based approaches: it avoids quantization and enables direct optimization of the rate-distortion performance. However, COMBINER still has significant limitations: 1) it uses factorized priors and posterior approximations that lack flexibility; 2) it cannot effectively adapt to local deviations from global patterns in the data; and 3) its performance can be susceptible to modeling choices and the variational parameters' initializations. Our proposed method, Robust and Enhanced COMBINER (RECOMBINER), addresses these issues by 1) enriching the variational approximation while maintaining its computational cost via a linear reparameterization of the INR weights, 2) augmenting our INRs with learnable positional encodings that enable them to adapt to local details and 3) splitting high-resolution data into patches to increase robustness and utilizing expressive hierarchical priors to capture dependency across patches. We conduct extensive experiments across several data modalities, showcasing that RECOMBINER achieves competitive results with the best INR-based methods and even outperforms autoencoder-based codecs on low-resolution images at low bitrates.

In this paper, we introduce SCALE, a collaborative framework that connects compact Specialized Translation Models (STMs) and general-purpose Large Language Models (LLMs) as one unified translation engine. By introducing translation from STM into the triplet in-context demonstrations, SCALE unlocks refinement and pivoting ability of LLM, thus mitigating language bias of LLM and parallel data bias of STM, enhancing LLM speciality without sacrificing generality, and facilitating continual learning without expensive LLM fine-tuning. Our comprehensive experiments show that SCALE significantly outperforms both few-shot LLMs (GPT-4) and specialized models (NLLB) in challenging low-resource settings. Moreover, in Xhosa to English translation, SCALE experiences consistent improvement by a 4 BLEURT score without tuning LLM and surpasses few-shot GPT-4 by 2.5 COMET score and 3.8 BLEURT score when equipped with a compact model consisting of merely 600M parameters. SCALE could also effectively exploit the existing language bias of LLMs by using an English-centric STM as a pivot for translation between any language pairs, outperforming few-shot GPT-4 by an average of 6 COMET points across eight translation directions. Furthermore we provide an in-depth analysis of SCALE's robustness, translation characteristics, and latency costs, providing solid foundation for future studies exploring the potential synergy between LLMs and more specialized, task-specific models.

In this paper, we introduce a set of \textit{Linear Temporal Logic} (LTL) formulae designed to provide explanations for policies. Our focus is on crafting explanations that elucidate both the ultimate objectives accomplished by the policy and the prerequisites it upholds throughout its execution. These LTL-based explanations feature a structured representation, which is particularly well-suited for local-search techniques. The effectiveness of our proposed approach is illustrated through a simulated capture the flag environment. The paper concludes with suggested directions for future research.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

北京阿比特科技有限公司