We introduce ExtremeBB, a textual database of over 53.5M posts made by 38.5k users on 12 extremist bulletin board forums promoting online hate, harassment, the manosphere and other forms of extremism. It enables large-scale analyses of qualitative and quantitative historical trends going back two decades: measuring hate speech and toxicity; tracing the evolution of different strands of extremist ideology; tracking the relationships between online subcultures, extremist behaviours, and real-world violence; and monitoring extremist communities in near real time. This can shed light not only on the spread of problematic ideologies but also the effectiveness of interventions. ExtremeBB comes with a robust ethical data-sharing regime that allows us to share data with academics worldwide. Since 2020, access has been granted to 49 licensees in 16 research groups from 12 institutions.
Compared to general document analysis tasks, form document structure understanding and retrieval are challenging. Form documents are typically made by two types of authors; A form designer, who develops the form structure and keys, and a form user, who fills out form values based on the provided keys. Hence, the form values may not be aligned with the form designer's intention (structure and keys) if a form user gets confused. In this paper, we introduce Form-NLU, the first novel dataset for form structure understanding and its key and value information extraction, interpreting the form designer's intent and the alignment of user-written value on it. It consists of 857 form images, 6k form keys and values, and 4k table keys and values. Our dataset also includes three form types: digital, printed, and handwritten, which cover diverse form appearances and layouts. We propose a robust positional and logical relation-based form key-value information extraction framework. Using this dataset, Form-NLU, we first examine strong object detection models for the form layout understanding, then evaluate the key information extraction task on the dataset, providing fine-grained results for different types of forms and keys. Furthermore, we examine it with the off-the-shelf pdf layout extraction tool and prove its feasibility in real-world cases.
We present the HANDAL dataset for category-level object pose estimation and affordance prediction. Unlike previous datasets, ours is focused on robotics-ready manipulable objects that are of the proper size and shape for functional grasping by robot manipulators, such as pliers, utensils, and screwdrivers. Our annotation process is streamlined, requiring only a single off-the-shelf camera and semi-automated processing, allowing us to produce high-quality 3D annotations without crowd-sourcing. The dataset consists of 308k annotated image frames from 2.2k videos of 212 real-world objects in 17 categories. We focus on hardware and kitchen tool objects to facilitate research in practical scenarios in which a robot manipulator needs to interact with the environment beyond simple pushing or indiscriminate grasping. We outline the usefulness of our dataset for 6-DoF category-level pose+scale estimation and related tasks. We also provide 3D reconstructed meshes of all objects, and we outline some of the bottlenecks to be addressed for democratizing the collection of datasets like this one.
Industry 4.0 and Internet of Things (IoT) technologies unlock unprecedented amount of data from factory production, posing big data challenges in volume and variety. In that context, distributed computing solutions such as cloud systems are leveraged to parallelise the data processing and reduce computation time. As the cloud systems become increasingly popular, there is increased demand that more users that were originally not cloud experts (such as data scientists, domain experts) deploy their solutions on the cloud systems. However, it is non-trivial to address both the high demand for cloud system users and the excessive time required to train them. To this end, we propose SemCloud, a semantics-enhanced cloud system, that couples cloud system with semantic technologies and machine learning. SemCloud relies on domain ontologies and mappings for data integration, and parallelises the semantic data integration and data analysis on distributed computing nodes. Furthermore, SemCloud adopts adaptive Datalog rules and machine learning for automated resource configuration, allowing non-cloud experts to use the cloud system. The system has been evaluated in industrial use case with millions of data, thousands of repeated runs, and domain users, showing promising results.
With rapid technological growth, security attacks are drastically increasing. In many crucial Internet-of-Things (IoT) applications such as healthcare and defense, the early detection of security attacks plays a significant role in protecting huge resources. An intrusion detection system is used to address this problem. The signature-based approaches fail to detect zero-day attacks. So anomaly-based detection particularly AI tools, are becoming popular. In addition, the imbalanced dataset leads to biased results. In Machine Learning (ML) models, F1 score is an important metric to measure the accuracy of class-level correct predictions. The model may fail to detect the target samples if the F1 is considerably low. It will lead to unrecoverable consequences in sensitive applications such as healthcare and defense. So, any improvement in the F1 score has significant impact on the resource protection. In this paper, we present a framework for ML-based intrusion detection system for an imbalanced dataset. In this study, the most recent dataset, namely CICIoT2023 is considered. The random forest (RF) algorithm is used in the proposed framework. The proposed approach improves 3.72%, 3.75% and 4.69% in precision, recall and F1 score, respectively, with the existing method. Additionally, for unsaturated classes (i.e., classes with F1 score < 0.99), F1 score improved significantly by 7.9%. As a result, the proposed approach is more suitable for IoT security applications for efficient detection of intrusion and is useful in further studies.
We present CASSINI, a network-aware job scheduler for machine learning (ML) clusters. CASSINI introduces a novel geometric abstraction to consider the communication pattern of different jobs while placing them on network links. To do so, CASSINI uses an affinity graph that finds a series of time-shift values to adjust the communication phases of a subset of jobs, such that the communication patterns of jobs sharing the same network link are interleaved with each other. Experiments with 13 common ML models on a 24-server testbed demonstrate that compared to the state-of-the-art ML schedulers, CASSINI improves the average and tail completion time of jobs by up to 1.6x and 2.5x, respectively. Moreover, we show that CASSINI reduces the number of ECN marked packets in the cluster by up to 33x.
This paper explores the current trending research areas in the field of Computer Science (CS) and investigates the factors contributing to their emergence. Leveraging a comprehensive dataset comprising papers, citations, and funding information, we employ advanced machine learning techniques, including Decision Tree and Logistic Regression models, to predict trending research areas. Our analysis reveals that the number of references cited in research papers (Reference Count) plays a pivotal role in determining trending research areas making reference counts the most relevant factor that drives trend in the CS field. Additionally, the influence of NSF grants and patents on trending topics has increased over time. The Logistic Regression model outperforms the Decision Tree model in predicting trends, exhibiting higher accuracy, precision, recall, and F1 score. By surpassing a random guess baseline, our data-driven approach demonstrates higher accuracy and efficacy in identifying trending research areas. The results offer valuable insights into the trending research areas, providing researchers and institutions with a data-driven foundation for decision-making and future research direction.
Knowledge graph reasoning (KGR), aiming to deduce new facts from existing facts based on mined logic rules underlying knowledge graphs (KGs), has become a fast-growing research direction. It has been proven to significantly benefit the usage of KGs in many AI applications, such as question answering and recommendation systems, etc. According to the graph types, the existing KGR models can be roughly divided into three categories, \textit{i.e.,} static models, temporal models, and multi-modal models. The early works in this domain mainly focus on static KGR and tend to directly apply general knowledge graph embedding models to the reasoning task. However, these models are not suitable for more complex but practical tasks, such as inductive static KGR, temporal KGR, and multi-modal KGR. To this end, multiple works have been developed recently, but no survey papers and open-source repositories comprehensively summarize and discuss models in this important direction. To fill the gap, we conduct a survey for knowledge graph reasoning tracing from static to temporal and then to multi-modal KGs. Concretely, the preliminaries, summaries of KGR models, and typical datasets are introduced and discussed consequently. Moreover, we discuss the challenges and potential opportunities. The corresponding open-source repository is shared on GitHub: //github.com/LIANGKE23/Awesome-Knowledge-Graph-Reasoning.
Graph Neural Networks (GNNs) have gained momentum in graph representation learning and boosted the state of the art in a variety of areas, such as data mining (\emph{e.g.,} social network analysis and recommender systems), computer vision (\emph{e.g.,} object detection and point cloud learning), and natural language processing (\emph{e.g.,} relation extraction and sequence learning), to name a few. With the emergence of Transformers in natural language processing and computer vision, graph Transformers embed a graph structure into the Transformer architecture to overcome the limitations of local neighborhood aggregation while avoiding strict structural inductive biases. In this paper, we present a comprehensive review of GNNs and graph Transformers in computer vision from a task-oriented perspective. Specifically, we divide their applications in computer vision into five categories according to the modality of input data, \emph{i.e.,} 2D natural images, videos, 3D data, vision + language, and medical images. In each category, we further divide the applications according to a set of vision tasks. Such a task-oriented taxonomy allows us to examine how each task is tackled by different GNN-based approaches and how well these approaches perform. Based on the necessary preliminaries, we provide the definitions and challenges of the tasks, in-depth coverage of the representative approaches, as well as discussions regarding insights, limitations, and future directions.
Deep Learning has revolutionized the fields of computer vision, natural language understanding, speech recognition, information retrieval and more. However, with the progressive improvements in deep learning models, their number of parameters, latency, resources required to train, etc. have all have increased significantly. Consequently, it has become important to pay attention to these footprint metrics of a model as well, not just its quality. We present and motivate the problem of efficiency in deep learning, followed by a thorough survey of the five core areas of model efficiency (spanning modeling techniques, infrastructure, and hardware) and the seminal work there. We also present an experiment-based guide along with code, for practitioners to optimize their model training and deployment. We believe this is the first comprehensive survey in the efficient deep learning space that covers the landscape of model efficiency from modeling techniques to hardware support. Our hope is that this survey would provide the reader with the mental model and the necessary understanding of the field to apply generic efficiency techniques to immediately get significant improvements, and also equip them with ideas for further research and experimentation to achieve additional gains.
In order to answer natural language questions over knowledge graphs, most processing pipelines involve entity and relation linking. Traditionally, entity linking and relation linking has been performed either as dependent sequential tasks or independent parallel tasks. In this paper, we propose a framework called "EARL", which performs entity linking and relation linking as a joint single task. EARL uses a graph connection based solution to the problem. We model the linking task as an instance of the Generalised Travelling Salesman Problem (GTSP) and use GTSP approximate algorithm solutions. We later develop EARL which uses a pair-wise graph-distance based solution to the problem.The system determines the best semantic connection between all keywords of the question by referring to a knowledge graph. This is achieved by exploiting the "connection density" between entity candidates and relation candidates. The "connection density" based solution performs at par with the approximate GTSP solution.We have empirically evaluated the framework on a dataset with 5000 questions. Our system surpasses state-of-the-art scores for entity linking task by reporting an accuracy of 0.65 to 0.40 from the next best entity linker.