Many natural computational problems in computer science, mathematics, physics, and other sciences amount to deciding if two objects are equivalent. Often this equivalence is defined in terms of group actions. A natural question is to ask when two objects can be distinguished by polynomial functions that are invariant under the group action. For finite groups, this is the usual notion of equivalence, but for continuous groups like the general linear groups it gives rise to a new notion, called orbit closure intersection. It captures, among others, the graph isomorphism problem, noncommutative PIT, null cone problems in invariant theory, equivalence problems for tensor networks, and the classification of multiparty quantum states. Despite recent algorithmic progress in celebrated special cases, the computational complexity of general orbit closure intersection problems is currently quite unclear. In particular, tensors seem to give rise to the most difficult problems. In this work we start a systematic study of orbit closure intersection from the complexity-theoretic viewpoint. To this end, we define a complexity class TOCI that captures the power of orbit closure intersection problems for general tensor actions, give an appropriate notion of algebraic reductions that imply polynomial-time reductions in the usual sense, but are amenable to invariant-theoretic techniques, identify natural tensor problems that are complete for TOCI, including the equivalence of 2D tensor networks with constant physical dimension, and show that the graph isomorphism problem can be reduced to these complete problems, hence GI$\subseteq$TOCI. As such, our work establishes the first lower bound on the computational complexity of orbit closure intersection problems, and it explains the difficulty of finding unconditional polynomial-time algorithms beyond special cases, as has been observed in the literature.
We propose a novel methodology to solve a key eigenvalue optimization problem which arises in the contractivity analysis of neural ODEs. When looking at contractivity properties of a one layer weight-tied neural ODE $\dot{u}(t)=\sigma(Au(t)+b)$ (with $u,b \in {\mathbb R}^n$, $A$ is a given $n \times n$ matrix, $\sigma : {\mathbb R} \to {\mathbb R}$ denotes an activation function and for a vector $z \in {\mathbb R}^n$, $\sigma(z) \in {\mathbb R}^n$ has to be interpreted entry-wise), we are led to study the logarithmic norm of a set of products of type $D A$, where $D$ is a diagonal matrix such that ${\mathrm{diag}}(D) \in \sigma'({\mathbb R}^n)$. Specifically, given a real number $c$ (usually $c=0$), the problem consists in finding the largest positive interval $\text{I}\subseteq \mathbb [0,\infty)$ such that the logarithmic norm $\mu(DA) \le c$ for all diagonal matrices $D$ with $D_{ii}\in \text{I}$. We propose a two-level nested methodology: an inner level where, for a given $\text{I}$, we compute an optimizer $D^\star(\text{I})$ by a gradient system approach, and an outer level where we tune $\text{I}$ so that the value $c$ is reached by $\mu(D^\star(\text{I})A)$. We extend the proposed two-level approach to the general multilayer, and possibly time-dependent, case $\dot{u}(t) = \sigma( A_k(t) \ldots \sigma ( A_{1}(t) u(t) + b_{1}(t) ) \ldots + b_{k}(t) )$ and we propose several numerical examples to illustrate its behaviour, including its stabilizing performance on a one-layer neural ODE applied to the classification of the MNIST handwritten digits dataset.
This work studies the parameter-dependent diffusion equation in a two-dimensional domain consisting of locally mirror symmetric layers. It is assumed that the diffusion coefficient is a constant in each layer. The goal is to find approximate parameter-to-solution maps that have a small number of terms. It is shown that in the case of two layers one can find a solution formula consisting of three terms with explicit dependencies on the diffusion coefficient. The formula is based on decomposing the solution into orthogonal parts related to both of the layers and the interface between them. This formula is then expanded to an approximate one for the multi-layer case. We give an analytical formula for square layers and use the finite element formulation for more general layers. The results are illustrated with numerical examples and have applications for reduced basis methods by analyzing the Kolmogorov n-width.
We propose and analyse a novel, fully discrete numerical algorithm for the approximation of the generalised Stokes system forced by transport noise -- a prototype model for non-Newtonian fluids including turbulence. Utilising the Gradient Discretisation Method, we show that the algorithm is long-term stable for a broad class of particular Gradient Discretisations. Building on the long-term stability and the derived continuity of the algorithm's solution operator, we construct two sequences of approximate invariant measures. At the moment, each sequence lacks one important feature: either the existence of a limit measure, or the invariance with respect to the discrete semigroup. We derive an abstract condition that merges both properties, recovering the existence of an invariant measure. We provide an example for which invariance and existence hold simultaneously, and characterise the invariant measure completely. We close the article by conducting two numerical experiments that show the influence of transport noise on the dynamics of power-law fluids; in particular, we find that transport noise enhances the dissipation of kinetic energy, the mixing of particles, as well as the size of vortices.
The notion of a non-deterministic logical matrix (where connectives are interpreted as multi-functions) extends the traditional semantics for propositional logics based on logical matrices (where connectives are interpreted as functions). This extension allows for finitely characterizing a much wider class of logics, and has proven decisive in a myriad of recent compositionality results. In this paper we show that the added expressivity brought by non-determinism also has its drawbacks, and in particular that the problem of determining whether two given finite non-deterministic matrices are equivalent, in the sense that they induce the same logic, becomes undecidable. We also discuss some workable sufficient conditions and particular cases, namely regarding rexpansion homomorphisms and bridges to calculi.
A statistical network model with overlapping communities can be generated as a superposition of mutually independent random graphs of varying size. The model is parameterized by the number of nodes, the number of communities, and the joint distribution of the community size and the edge probability. This model admits sparse parameter regimes with power-law limiting degree distributions and non-vanishing clustering coefficients. This article presents large-scale approximations of clique and cycle frequencies for graph samples generated by the model, which are valid for regimes with unbounded numbers of overlapping communities. Our results reveal the growth rates of these subgraph frequencies and show that their theoretical densities can be reliably estimated from data.
Statistical learning under distribution shift is challenging when neither prior knowledge nor fully accessible data from the target distribution is available. Distributionally robust learning (DRL) aims to control the worst-case statistical performance within an uncertainty set of candidate distributions, but how to properly specify the set remains challenging. To enable distributional robustness without being overly conservative, in this paper, we propose a shape-constrained approach to DRL, which incorporates prior information about the way in which the unknown target distribution differs from its estimate. More specifically, we assume the unknown density ratio between the target distribution and its estimate is isotonic with respect to some partial order. At the population level, we provide a solution to the shape-constrained optimization problem that does not involve the isotonic constraint. At the sample level, we provide consistency results for an empirical estimator of the target in a range of different settings. Empirical studies on both synthetic and real data examples demonstrate the improved accuracy of the proposed shape-constrained approach.
We propose a procedure for the numerical approximation of invariance equations arising in the moment matching technique associated with reduced-order modeling of high-dimensional dynamical systems. The Galerkin residual method is employed to find an approximate solution to the invariance equation using a Newton iteration on the coefficients of a monomial basis expansion of the solution. These solutions to the invariance equations can then be used to construct reduced-order models. We assess the ability of the method to solve the invariance PDE system as well as to achieve moment matching and recover a system's steady-state behaviour for linear and nonlinear signal generators with system dynamics up to $n=1000$ dimensions.
Conic optimization plays a crucial role in many machine learning (ML) problems. However, practical algorithms for conic constrained ML problems with large datasets are often limited to specific use cases, as stochastic algorithms for general conic optimization remain underdeveloped. To fill this gap, we introduce a stochastic interior-point method (SIPM) framework for general conic optimization, along with four novel SIPM variants leveraging distinct stochastic gradient estimators. Under mild assumptions, we establish the global convergence rates of our proposed SIPMs, which, up to a logarithmic factor, match the best-known rates in stochastic unconstrained optimization. Finally, our numerical experiments on robust linear regression, multi-task relationship learning, and clustering data streams demonstrate the effectiveness and efficiency of our approach.
We design and investigate a variety of multigrid solvers for high-order local discontinuous Galerkin methods applied to elliptic interface and multiphase Stokes problems. Using the template of a standard multigrid V-cycle, we consider a variety of element-wise block smoothers, including Jacobi, multi-coloured Gauss-Seidel, processor-block Gauss-Seidel, and with special interest, smoothers based on sparse approximate inverse (SAI) methods. In particular, we develop SAI methods that: (i) balance the smoothing of velocity and pressure variables in Stokes problems; and (ii) robustly handles high-contrast viscosity coefficients in multiphase problems. Across a broad range of two- and three-dimensional test cases, including Poisson, elliptic interface, steady-state Stokes, and unsteady Stokes problems, we examine a multitude of multigrid smoother and solver combinations. In every case, there is at least one approach that matches the performance of classical geometric multigrid algorithms, e.g., 4 to 8 iterations to reduce the residual by 10 orders of magnitude. We also discuss their relative merits with regard to simplicity, robustness, computational cost, and parallelisation.
Many combinatorial optimization problems can be formulated as the search for a subgraph that satisfies certain properties and minimizes the total weight. We assume here that the vertices correspond to points in a metric space and can take any position in given uncertainty sets. Then, the cost function to be minimized is the sum of the distances for the worst positions of the vertices in their uncertainty sets. We propose two types of polynomial-time approximation algorithms. The first one relies on solving a deterministic counterpart of the problem where the uncertain distances are replaced with maximum pairwise distances. We study in details the resulting approximation ratio, which depends on the structure of the feasible subgraphs and whether the metric space is Ptolemaic or not. The second algorithm is a fully-polynomial time approximation scheme for the special case of $s-t$ paths.