亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

An optimal delivery of arguments is key to persuasion in any debate, both for humans and for AI systems. This requires the use of clear and fluent claims relevant to the given debate. Prior work has studied the automatic assessment of argument quality extensively. Yet, no approach actually improves the quality so far. To fill this gap, this paper proposes the task of claim optimization: to rewrite argumentative claims in order to optimize their delivery. As multiple types of optimization are possible, we approach this task by first generating a diverse set of candidate claims using a large language model, such as BART, taking into account contextual information. Then, the best candidate is selected using various quality metrics. In automatic and human evaluation on an English-language corpus, our quality-based candidate selection outperforms several baselines, improving 60% of all claims (worsening 16% only). Follow-up analyses reveal that, beyond copy editing, our approach often specifies claims with details, whereas it adds less evidence than humans do. Moreover, its capabilities generalize well to other domains, such as instructional texts.

相關內容

Back translation (BT) is one of the most significant technologies in NMT research fields. Existing attempts on BT share a common characteristic: they employ either beam search or random sampling to generate synthetic data with a backward model but seldom work studies the role of synthetic data in the performance of BT. This motivates us to ask a fundamental question: {\em what kind of synthetic data contributes to BT performance?} Through both theoretical and empirical studies, we identify two key factors on synthetic data controlling the back-translation NMT performance, which are quality and importance. Furthermore, based on our findings, we propose a simple yet effective method to generate synthetic data to better trade off both factors so as to yield a better performance for BT. We run extensive experiments on WMT14 DE-EN, EN-DE, and RU-EN benchmark tasks. By employing our proposed method to generate synthetic data, our BT model significantly outperforms the standard BT baselines (i.e., beam and sampling based methods for data generation), which proves the effectiveness of our proposed methods.

Existing hierarchical forecasting techniques scale poorly when the number of time series increases. We propose to learn a coherent forecast for millions of time series with a single bottom-level forecast model by using a sparse loss function that directly optimizes the hierarchical product and/or temporal structure. The benefit of our sparse hierarchical loss function is that it provides practitioners a method of producing bottom-level forecasts that are coherent to any chosen cross-sectional or temporal hierarchy. In addition, removing the need for a post-processing step as required in traditional hierarchical forecasting techniques reduces the computational cost of the prediction phase in the forecasting pipeline. On the public M5 dataset, our sparse hierarchical loss function performs up to 10% (RMSE) better compared to the baseline loss function. We implement our sparse hierarchical loss function within an existing forecasting model at bol, a large European e-commerce platform, resulting in an improved forecasting performance of 2% at the product level. Finally, we found an increase in forecasting performance of about 5-10% when evaluating the forecasting performance across the cross-sectional hierarchies that we defined. These results demonstrate the usefulness of our sparse hierarchical loss applied to a production forecasting system at a major e-commerce platform.

Radar odometry estimation has emerged as a critical technique in the field of autonomous navigation, providing robust and reliable motion estimation under various environmental conditions. Despite its potential, the complex nature of radar signals and the inherent challenges associated with processing these signals have limited the widespread adoption of this technology. This paper aims to address these challenges by proposing novel improvements to an existing method for radar odometry estimation, designed to enhance accuracy and reliability in diverse scenarios. Our pipeline consists of filtering, motion compensation, oriented surface points computation, smoothing, one-to-many radar scan registration, and pose refinement. The developed method enforces local understanding of the scene, by adding additional information through smoothing techniques, and alignment of consecutive scans, as a refinement posterior to the one-to-many registration. We present an in-depth investigation of the contribution of each improvement to the localization accuracy, and we benchmark our system on the sequences of the main datasets for radar understanding, i.e., the Oxford Radar RobotCar, MulRan, and Boreas datasets. The proposed pipeline is able to achieve superior results, on all scenarios considered and under harsh environmental constraints.

Inference, especially those derived from inductive processes, is a crucial component in our conversation to complement the information implicitly or explicitly conveyed by a speaker. While recent large language models show remarkable advances in inference tasks, their performance in inductive reasoning, where not all information is present in the context, is far behind deductive reasoning. In this paper, we analyze the behavior of the models based on the task difficulty defined by the semantic information gap -- which distinguishes inductive and deductive reasoning (Johnson-Laird, 1988, 1993). Our analysis reveals that the disparity in information between dialogue contexts and desired inferences poses a significant challenge to the inductive inference process. To mitigate this information gap, we investigate a contrastive learning approach by feeding negative samples. Our experiments suggest negative samples help models understand what is wrong and improve their inference generations.

Significant computational resources are required to train Graph Neural Networks (GNNs) at a large scale, and the process is highly data-intensive. One of the most effective ways to reduce resource requirements is minibatch training coupled with graph sampling. GNNs have the unique property that items in a minibatch have overlapping data. However, the commonly implemented Independent Minibatching approach assigns each Processing Element (PE) its own minibatch to process, leading to duplicated computations and input data access across PEs. This amplifies the Neighborhood Explosion Phenomenon (NEP), which is the main bottleneck limiting scaling. To reduce the effects of NEP in the multi-PE setting, we propose a new approach called Cooperative Minibatching. Our approach capitalizes on the fact that the size of the sampled subgraph is a concave function of the batch size, leading to significant reductions in the amount of work per seed vertex as batch sizes increase. Hence, it is favorable for processors equipped with a fast interconnect to work on a large minibatch together as a single larger processor, instead of working on separate smaller minibatches, even though global batch size is identical. We also show how to take advantage of the same phenomenon in serial execution by generating dependent consecutive minibatches. Our experimental evaluations show up to 4x bandwidth savings for fetching vertex embeddings, by simply increasing this dependency without harming model convergence. Combining our proposed approaches, we achieve up to 64% speedup over Independent Minibatching on single-node multi-GPU systems.

This paper studies a long-term resource allocation problem over multiple periods where each period requires a multi-stage decision-making process. We formulate the problem as an online allocation problem in an episodic finite-horizon constrained Markov decision process with an unknown non-stationary transition function and stochastic non-stationary reward and resource consumption functions. We propose the observe-then-decide regime and improve the existing decide-then-observe regime, while the two settings differ in how the observations and feedback about the reward and resource consumption functions are given to the decision-maker. We develop an online dual mirror descent algorithm that achieves near-optimal regret bounds for both settings. For the observe-then-decide regime, we prove that the expected regret against the dynamic clairvoyant optimal policy is bounded by $\tilde O(\rho^{-1}{H^{3/2}}S\sqrt{AT})$ where $\rho\in(0,1)$ is the budget parameter, $H$ is the length of the horizon, $S$ and $A$ are the numbers of states and actions, and $T$ is the number of episodes. For the decide-then-observe regime, we show that the regret against the static optimal policy that has access to the mean reward and mean resource consumption functions is bounded by $\tilde O(\rho^{-1}{H^{3/2}}S\sqrt{AT})$ with high probability. We test the numerical efficiency of our method for a variant of the resource-constrained inventory management problem.

The Internet of Things (IoT) consistently generates vast amounts of data, sparking increasing concern over the protection of data privacy and the limitation of data misuse. Federated learning (FL) facilitates collaborative capabilities among multiple parties by sharing machine learning (ML) model parameters instead of raw user data, and it has recently gained significant attention for its potential in privacy preservation and learning efficiency enhancement. In this paper, we highlight the digital ethics concerns that arise when human-centric devices serve as clients in FL. More specifically, challenges of game dynamics, fairness, incentive, and continuity arise in FL due to differences in perspectives and objectives between clients and the server. We analyze these challenges and their solutions from the perspectives of both the client and the server, and through the viewpoints of centralized and decentralized FL. Finally, we explore the opportunities in FL for human-centric IoT as directions for future development.

Emotion recognition in conversation (ERC) aims to detect the emotion label for each utterance. Motivated by recent studies which have proven that feeding training examples in a meaningful order rather than considering them randomly can boost the performance of models, we propose an ERC-oriented hybrid curriculum learning framework. Our framework consists of two curricula: (1) conversation-level curriculum (CC); and (2) utterance-level curriculum (UC). In CC, we construct a difficulty measurer based on "emotion shift" frequency within a conversation, then the conversations are scheduled in an "easy to hard" schema according to the difficulty score returned by the difficulty measurer. For UC, it is implemented from an emotion-similarity perspective, which progressively strengthens the model's ability in identifying the confusing emotions. With the proposed model-agnostic hybrid curriculum learning strategy, we observe significant performance boosts over a wide range of existing ERC models and we are able to achieve new state-of-the-art results on four public ERC datasets.

This manuscript portrays optimization as a process. In many practical applications the environment is so complex that it is infeasible to lay out a comprehensive theoretical model and use classical algorithmic theory and mathematical optimization. It is necessary as well as beneficial to take a robust approach, by applying an optimization method that learns as one goes along, learning from experience as more aspects of the problem are observed. This view of optimization as a process has become prominent in varied fields and has led to some spectacular success in modeling and systems that are now part of our daily lives.

The present paper surveys neural approaches to conversational AI that have been developed in the last few years. We group conversational systems into three categories: (1) question answering agents, (2) task-oriented dialogue agents, and (3) chatbots. For each category, we present a review of state-of-the-art neural approaches, draw the connection between them and traditional approaches, and discuss the progress that has been made and challenges still being faced, using specific systems and models as case studies.

北京阿比特科技有限公司