亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Many causal and structural parameters are linear functionals of an underlying regression. The Riesz representer is a key component in the asymptotic variance of a semiparametrically estimated linear functional. We propose an adversarial framework to estimate the Riesz representer using general function spaces. We prove a nonasymptotic mean square rate in terms of an abstract quantity called the critical radius, then specialize it for neural networks, random forests, and reproducing kernel Hilbert spaces as leading cases. Furthermore, we use critical radius theory -- in place of Donsker theory -- to prove asymptotic normality without sample splitting, uncovering a ``complexity-rate robustness'' condition. This condition has practical consequences: inference without sample splitting is possible in several machine learning settings, which may improve finite sample performance compared to sample splitting. Our estimators achieve nominal coverage in highly nonlinear simulations where previous methods break down. They shed new light on the heterogeneous effects of matching grants.

相關內容

We study the convex hulls of reachable sets of nonlinear systems with bounded disturbances and uncertain initial conditions. Reachable sets play a critical role in control, but remain notoriously challenging to compute, and existing over-approximation tools tend to be conservative or computationally expensive. In this work, we characterize the convex hulls of reachable sets as the convex hulls of solutions of an ordinary differential equation with initial conditions on the sphere. This finite-dimensional characterization unlocks an efficient sampling-based estimation algorithm to accurately over-approximate reachable sets. We also study the structure of the boundary of the reachable convex hulls and derive error bounds for the estimation algorithm. We give applications to neural feedback loop analysis and robust MPC.

In a ring-signature-based anonymous cryptocurrency, signers of a transaction are hidden among a set of potential signers, called a ring, whose size is much smaller than the number of all users. The ring-membership relations specified by the sets of transactions thus induce bipartite transaction graphs, whose distribution is in turn induced by the ring sampler underlying the cryptocurrency. Since efficient graph analysis could be performed on transaction graphs to potentially deanonymise signers, it is crucial to understand the resistance of (the transaction graphs induced by) a ring sampler against graph analysis. Of particular interest is the class of partitioning ring samplers. Although previous works showed that they provide almost optimal local anonymity, their resistance against global, e.g. graph-based, attacks were unclear. In this work, we analyse transaction graphs induced by partitioning ring samplers. Specifically, we show (partly analytically and partly empirically) that, somewhat surprisingly, by setting the ring size to be at least logarithmic in the number of users, a graph-analysing adversary is no better than the one that performs random guessing in deanonymisation up to constant factor of 2.

Multimodal datasets contain observations generated by multiple types of sensors. Most works to date focus on uncovering latent structures in the data that appear in all modalities. However, important aspects of the data may appear in only one modality due to the differences between the sensors. Uncovering modality-specific attributes may provide insights into the sources of the variability of the data. For example, certain clusters may appear in the analysis of genetics but not in epigenetic markers. Another example is hyper-spectral satellite imaging, where various atmospheric and ground phenomena are detectable using different parts of the spectrum. In this paper, we address the problem of uncovering latent structures that are unique to a single modality. Our approach is based on computing a graph representation of datasets from two modalities and analyzing the differences between their connectivity patterns. We provide an asymptotic analysis of the convergence of our approach based on a product manifold model. To evaluate the performance of our method, we test its ability to uncover latent structures in multiple types of artificial and real datasets.

We investigate the vulnerability of computer-vision-based signal classifiers to adversarial perturbations of their inputs, where the signals and perturbations are subject to physical constraints. We consider a scenario in which a source and interferer emit signals that propagate as waves to a detector, which attempts to classify the source by analyzing the spectrogram of the signal it receives using a pre-trained neural network. By solving PDE-constrained optimization problems, we construct interfering signals that cause the detector to misclassify the source even though the perturbations to the spectrogram of the received signal are nearly imperceptible. Though such problems can have millions of decision variables, we introduce methods to solve them efficiently. Our experiments demonstrate that one can compute effective and physically realizable adversarial perturbations for a variety of machine learning models under various physical conditions.

Large Language Models (LLMs) have quickly risen to prominence due to their ability to perform at or close to the state-of-the-art in a variety of fields while handling natural language. An important field of research is the application of such models at the cybersecurity context. This survey aims to identify where in the field of cybersecurity LLMs have already been applied, the ways in which they are being used and their limitations in the field. Finally, suggestions are made on how to improve such limitations and what can be expected from these systems once these limitations are overcome.

Fractional derivatives are a well-studied generalization of integer order derivatives. Naturally, for optimization, it is of interest to understand the convergence properties of gradient descent using fractional derivatives. Convergence analysis of fractional gradient descent is currently limited both in the methods analyzed and the settings analyzed. This paper aims to fill in these gaps by analyzing variations of fractional gradient descent in smooth and convex, smooth and strongly convex, and smooth and non-convex settings. First, novel bounds will be established bridging fractional and integer derivatives. Then, these bounds will be applied to the aforementioned settings to prove linear convergence for smooth and strongly convex functions and $O(1/T)$ convergence for smooth and convex functions. Additionally, we prove $O(1/T)$ convergence for smooth and non-convex functions using an extended notion of smoothness - H\"older smoothness - that is more natural for fractional derivatives. Finally, empirical results will be presented on the potential speed up of fractional gradient descent over standard gradient descent as well as some preliminary theoretical results explaining this speed up.

Large Language Models (LLMs) have shown excellent generalization capabilities that have led to the development of numerous models. These models propose various new architectures, tweaking existing architectures with refined training strategies, increasing context length, using high-quality training data, and increasing training time to outperform baselines. Analyzing new developments is crucial for identifying changes that enhance training stability and improve generalization in LLMs. This survey paper comprehensively analyses the LLMs architectures and their categorization, training strategies, training datasets, and performance evaluations and discusses future research directions. Moreover, the paper also discusses the basic building blocks and concepts behind LLMs, followed by a complete overview of LLMs, including their important features and functions. Finally, the paper summarizes significant findings from LLM research and consolidates essential architectural and training strategies for developing advanced LLMs. Given the continuous advancements in LLMs, we intend to regularly update this paper by incorporating new sections and featuring the latest LLM models.

The concept of causality plays an important role in human cognition . In the past few decades, causal inference has been well developed in many fields, such as computer science, medicine, economics, and education. With the advancement of deep learning techniques, it has been increasingly used in causal inference against counterfactual data. Typically, deep causal models map the characteristics of covariates to a representation space and then design various objective optimization functions to estimate counterfactual data unbiasedly based on the different optimization methods. This paper focuses on the survey of the deep causal models, and its core contributions are as follows: 1) we provide relevant metrics under multiple treatments and continuous-dose treatment; 2) we incorporate a comprehensive overview of deep causal models from both temporal development and method classification perspectives; 3) we assist a detailed and comprehensive classification and analysis of relevant datasets and source code.

Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.

Image segmentation is an important component of many image understanding systems. It aims to group pixels in a spatially and perceptually coherent manner. Typically, these algorithms have a collection of parameters that control the degree of over-segmentation produced. It still remains a challenge to properly select such parameters for human-like perceptual grouping. In this work, we exploit the diversity of segments produced by different choices of parameters. We scan the segmentation parameter space and generate a collection of image segmentation hypotheses (from highly over-segmented to under-segmented). These are fed into a cost minimization framework that produces the final segmentation by selecting segments that: (1) better describe the natural contours of the image, and (2) are more stable and persistent among all the segmentation hypotheses. We compare our algorithm's performance with state-of-the-art algorithms, showing that we can achieve improved results. We also show that our framework is robust to the choice of segmentation kernel that produces the initial set of hypotheses.

北京阿比特科技有限公司