亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this work, we present a new approach for constructing models for correlation matrices with a user-defined graphical structure. The graphical structure makes correlation matrices interpretable and avoids the quadratic increase of parameters as a function of the dimension. We suggest an automatic approach to define a prior using a natural sequence of simpler models within the Penalized Complexity framework for the unknown parameters in these models. We illustrate this approach with three applications: a multivariate linear regression of four biomarkers, a multivariate disease mapping, and a multivariate longitudinal joint modelling. Each application underscores our method's intuitive appeal, signifying a substantial advancement toward a more cohesive and enlightening model that facilitates a meaningful interpretation of correlation matrices.

相關內容

Fully Bayesian methods for Cox models specify a model for the baseline hazard function. Parametric approaches generally provide monotone estimations. Semi-parametric choices allow for more flexible patterns but they can suffer from overfitting and instability. Regularization methods through prior distributions with correlated structures usually give reasonable answers to these types of situations. We discuss Bayesian regularization for Cox survival models defined via flexible baseline hazards specified by a mixture of piecewise constant functions and by a cubic B-spline function. For those "semiparametric" proposals, different prior scenarios ranging from prior independence to particular correlated structures are discussed in a real study with micro-virulence data and in an extensive simulation scenario that includes different data sample and time axis partition sizes in order to capture risk variations. The posterior distribution of the parameters was approximated using Markov chain Monte Carlo methods. Model selection was performed in accordance with the Deviance Information Criteria and the Log Pseudo-Marginal Likelihood. The results obtained reveal that, in general, Cox models present great robustness in covariate effects and survival estimates independent of the baseline hazard specification. In relation to the "semi-parametric" baseline hazard specification, the B-splines hazard function is less dependent on the regularization process than the piecewise specification because it demands a smaller time axis partition to estimate a similar behaviour of the risk.

Using validated numerical methods, interval arithmetic and Taylor models, we propose a certified predictor-corrector loop for tracking zeros of polynomial systems with a parameter. We provide a Rust implementation which shows tremendous improvement over existing software for certified path tracking.

SDRDPy is a desktop application that allows experts an intuitive graphic and tabular representation of the knowledge extracted by any supervised descriptive rule discovery algorithm. The application is able to provide an analysis of the data showing the relevant information of the data set and the relationship between the rules, data and the quality measures associated for each rule regardless of the tool where algorithm has been executed. All of the information is presented in a user-friendly application in order to facilitate expert analysis and also the exportation of reports in different formats.

Among semiparametric regression models, partially linear additive models provide a useful tool to include additive nonparametric components as well as a parametric component, when explaining the relationship between the response and a set of explanatory variables. This paper concerns such models under sparsity assumptions for the covariates included in the linear component. Sparse covariates are frequent in regression problems where the task of variable selection is usually of interest. As in other settings, outliers either in the residuals or in the covariates involved in the linear component have a harmful effect. To simultaneously achieve model selection for the parametric component of the model and resistance to outliers, we combine preliminary robust estimators of the additive component, robust linear $MM-$regression estimators with a penalty such as SCAD on the coefficients in the parametric part. Under mild assumptions, consistency results and rates of convergence for the proposed estimators are derived. A Monte Carlo study is carried out to compare, under different models and contamination schemes, the performance of the robust proposal with its classical counterpart. The obtained results show the advantage of using the robust approach. Through the analysis of a real data set, we also illustrate the benefits of the proposed procedure.

This manuscript summarizes the outcome of the focus groups at "The f(A)bulous workshop on matrix functions and exponential integrators", held at the Max Planck Institute for Dynamics of Complex Technical Systems in Magdeburg, Germany, on 25-27 September 2023. There were three focus groups in total, each with a different theme: knowledge transfer, high-performance and energy-aware computing, and benchmarking. We collect insights, open issues, and perspectives from each focus group, as well as from general discussions throughout the workshop. Our primary aim is to highlight ripe research directions and continue to build on the momentum from a lively meeting.

We design in this work a discrete de Rham complex on manifolds. This complex, written in the framework of exterior calculus, is applicable on meshes on the manifold with generic elements, and has the same cohomology as the continuous de Rham complex. Notions of local (full and trimmed) polynomial spaces are developed, with compatibility requirements between polynomials on mesh entities of various dimensions. Explicit examples of polynomials spaces are presented. The discrete de Rham complex is then used to set up a scheme for the Maxwell equations on a 2D manifold without boundary, and we show that a natural discrete version of the constraint linking the electric field and the electric charge density is satisfied. Numerical examples are provided on the sphere and the torus, based on a bespoke analytical solution and mesh design on each manifold.

We propose a novel algorithm for the support estimation of partially known Gaussian graphical models that incorporates prior information about the underlying graph. In contrast to classical approaches that provide a point estimate based on a maximum likelihood or a maximum a posteriori criterion using (simple) priors on the precision matrix, we consider a prior on the graph and rely on annealed Langevin diffusion to generate samples from the posterior distribution. Since the Langevin sampler requires access to the score function of the underlying graph prior, we use graph neural networks to effectively estimate the score from a graph dataset (either available beforehand or generated from a known distribution). Numerical experiments demonstrate the benefits of our approach.

We derive bounds on the moduli of the eigenvalues of special type of matrix rational functions using the following techniques/methods: (1) the Bauer-Fike theorem on an associated block matrix of the given matrix rational function, (2) by associating a real rational function, along with Rouch$\text{\'e}$ theorem for the matrix rational function and (3) by a numerical radius inequality for a block matrix for the matrix rational function. These bounds are compared when the coefficients are unitary matrices. Numerical examples are given to illustrate the results obtained.

It is known that standard stochastic Galerkin methods encounter challenges when solving partial differential equations with high-dimensional random inputs, which are typically caused by the large number of stochastic basis functions required. It becomes crucial to properly choose effective basis functions, such that the dimension of the stochastic approximation space can be reduced. In this work, we focus on the stochastic Galerkin approximation associated with generalized polynomial chaos (gPC), and explore the gPC expansion based on the analysis of variance (ANOVA) decomposition. A concise form of the gPC expansion is presented for each component function of the ANOVA expansion, and an adaptive ANOVA procedure is proposed to construct the overall stochastic Galerkin system. Numerical results demonstrate the efficiency of our proposed adaptive ANOVA stochastic Galerkin method for both diffusion and Helmholtz problems.

Statistical inference for high dimensional parameters (HDPs) can be based on their intrinsic correlation; that is, parameters that are close spatially or temporally tend to have more similar values. This is why nonlinear mixed-effects models (NMMs) are commonly (and appropriately) used for models with HDPs. Conversely, in many practical applications of NMM, the random effects (REs) are actually correlated HDPs that should remain constant during repeated sampling for frequentist inference. In both scenarios, the inference should be conditional on REs, instead of marginal inference by integrating out REs. In this paper, we first summarize recent theory of conditional inference for NMM, and then propose a bias-corrected RE predictor and confidence interval (CI). We also extend this methodology to accommodate the case where some REs are not associated with data. Simulation studies indicate that this new approach leads to substantial improvement in the conditional coverage rate of RE CIs, including CIs for smooth functions in generalized additive models, as compared to the existing method based on marginal inference.

北京阿比特科技有限公司