亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Neural Networks (NNs) have been successfully employed to represent the state evolution of complex dynamical systems. Such models, referred to as NN dynamic models (NNDMs), use iterative noisy predictions of NN to estimate a distribution of system trajectories over time. Despite their accuracy, safety analysis of NNDMs is known to be a challenging problem and remains largely unexplored. To address this issue, in this paper, we introduce a method of providing safety guarantees for NNDMs. Our approach is based on stochastic barrier functions, whose relation with safety are analogous to that of Lyapunov functions with stability. We first show a method of synthesizing stochastic barrier functions for NNDMs via a convex optimization problem, which in turn provides a lower bound on the system's safety probability. A key step in our method is the employment of the recent convex approximation results for NNs to find piece-wise linear bounds, which allow the formulation of the barrier function synthesis problem as a sum-of-squares optimization program. If the obtained safety probability is above the desired threshold, the system is certified. Otherwise, we introduce a method of generating controls for the system that robustly maximizes the safety probability in a minimally-invasive manner. We exploit the convexity property of the barrier function to formulate the optimal control synthesis problem as a linear program. Experimental results illustrate the efficacy of the method. Namely, they show that the method can scale to multi-dimensional NNDMs with multiple layers and hundreds of neurons per layer, and that the controller can significantly improve the safety probability.

相關內容

This paper presents the Relaxed Continuous-Time Actor-critic (RCTAC) algorithm, a method for finding the nearly optimal policy for nonlinear continuous-time (CT) systems with known dynamics and infinite horizon, such as the path-tracking control of vehicles. RCTAC has several advantages over existing adaptive dynamic programming algorithms for CT systems. It does not require the ``admissibility" of the initialized policy or the input-affine nature of controlled systems for convergence. Instead, given any initial policy, RCTAC can converge to an admissible, and subsequently nearly optimal policy for a general nonlinear system with a saturated controller. RCTAC consists of two phases: a warm-up phase and a generalized policy iteration phase. The warm-up phase minimizes the square of the Hamiltonian to achieve admissibility, while the generalized policy iteration phase relaxes the update termination conditions for faster convergence. The convergence and optimality of the algorithm are proven through Lyapunov analysis, and its effectiveness is demonstrated through simulations and real-world path-tracking tasks.

Generating accurate runtime safety estimates for autonomous systems is vital to ensuring their continued proliferation. However, exhaustive reasoning about future behaviors is generally too complex to do at runtime. To provide scalable and formal safety estimates, we propose a method for leveraging design-time model checking results at runtime. Specifically, we model the system as a probabilistic automaton (PA) and compute bounded-time reachability probabilities over the states of the PA at design time. At runtime, we combine distributions of state estimates with the model checking results to produce a bounded time safety estimate. We argue that our approach produces well-calibrated safety probabilities, assuming the estimated state distributions are well-calibrated. We evaluate our approach on simulated water tanks.

In the context of simulation-based methods, multiple challenges arise, two of which are considered in this work. As a first challenge, problems including time-dependent phenomena with complex domain deformations, potentially even with changes in the domain topology, need to be tackled appropriately. The second challenge arises when computational resources and the time for evaluating the model become critical in so-called many query scenarios for parametric problems. For example, these problems occur in optimization, uncertainty quantification (UQ), or automatic control and using highly resolved full-order models (FOMs) may become impractical. To address both types of complexity, we present a novel projection-based model order reduction (MOR) approach for deforming domain problems that takes advantage of the time-continuous space-time formulation. We apply it to two examples that are relevant for engineering or biomedical applications and conduct an error and performance analysis. In both cases, we are able to drastically reduce the computational expense for a model evaluation and, at the same time, to maintain an adequate accuracy level. All in all, this work indicates the effectiveness of the presented MOR approach for deforming domain problems taking advantage of a time-continuous space-time setting.

Orthogonality constraints naturally appear in many machine learning problems, from Principal Components Analysis to robust neural network training. They are usually solved using Riemannian optimization algorithms, which minimize the objective function while enforcing the constraint. However, enforcing the orthogonality constraint can be the most time-consuming operation in such algorithms. Recently, Ablin & Peyr\'e (2022) proposed the Landing algorithm, a method with cheap iterations that does not enforce the orthogonality constraint but is attracted towards the manifold in a smooth manner. In this article, we provide new practical and theoretical developments for the landing algorithm. First, the method is extended to the Stiefel manifold, the set of rectangular orthogonal matrices. We also consider stochastic and variance reduction algorithms when the cost function is an average of many functions. We demonstrate that all these methods have the same rate of convergence as their Riemannian counterparts that exactly enforce the constraint. Finally, our experiments demonstrate the promise of our approach to an array of machine-learning problems that involve orthogonality constraints.

Barrier function-based inequality constraints are a means to enforce safety specifications for control systems. When used in conjunction with a convex optimization program, they provide a computationally efficient method to enforce safety for the general class of control-affine systems. One of the main assumptions when taking this approach is the a priori knowledge of the barrier function itself, i.e., knowledge of the safe set. In the context of navigation through unknown environments where the locally safe set evolves with time, such knowledge does not exist. This manuscript focuses on the synthesis of a zeroing barrier function characterizing the safe set based on safe and unsafe sample measurements, e.g., from perception data in navigation applications. Prior work formulated a supervised machine learning algorithm whose solution guaranteed the construction of a zeroing barrier function with specific level-set properties. However, it did not explore the geometry of the neural network design used for the synthesis process. This manuscript describes the specific geometry of the neural network used for zeroing barrier function synthesis, and shows how the network provides the necessary representation for splitting the state space into safe and unsafe regions.

Unmanned aerial vehicles (UAVs), specifically quadrotors, have revolutionized various industries with their maneuverability and versatility, but their safe operation in dynamic environments heavily relies on effective collision avoidance techniques. This paper introduces a novel technique for safely navigating a quadrotor along a desired route while avoiding kinematic obstacles. The proposed approach employs control barrier functions and utilizes collision cones to ensure that the quadrotor's velocity and the obstacle's velocity always point away from each other. In particular, we propose a new constraint formulation that ensures that the relative velocity between the quadrotor and the obstacle always avoids a cone of vectors that may lead to a collision. By showing that the proposed constraint is a valid control barrier function (CBFs) for quadrotors, we are able to leverage on its real-time implementation via Quadratic Programs (QPs), called the CBF-QPs. We validate the effectiveness of the proposed CBF-QPs by demonstrating collision avoidance with moving obstacles under multiple scenarios. This is shown in the pybullet simulator.Furthermore we compare the proposed approach with CBF-QPs shown in literature, especially the well-known higher order CBF-QPs (HO-CBF-QPs), where in we show that it is more conservative compared to the proposed approach. This comparison also shown in simulation in detail.

We give a $2^{\tilde{O}(\sqrt{n}/\epsilon)}$-time algorithm for properly learning monotone Boolean functions under the uniform distribution over $\{0,1\}^n$. Our algorithm is robust to adversarial label noise and has a running time nearly matching that of the state-of-the-art improper learning algorithm of Bshouty and Tamon (JACM '96) and an information-theoretic lower bound of Blais et al (RANDOM '15). Prior to this work, no proper learning algorithm with running time smaller than $2^{\Omega(n)}$ was known to exist. The core of our proper learner is a \emph{local computation algorithm} for sorting binary labels on a poset. Our algorithm is built on a body of work on distributed greedy graph algorithms; specifically we rely on a recent work of Ghaffari (FOCS'22), which gives an efficient algorithm for computing maximal matchings in a graph in the LCA model of Rubinfeld et al and Alon et al (ICS'11, SODA'12). The applications of our local sorting algorithm extend beyond learning on the Boolean cube: we also give a tolerant tester for Boolean functions over general posets that distinguishes functions that are $\epsilon/3$-close to monotone from those that are $\epsilon$-far. Previous tolerant testers for the Boolean cube only distinguished between $\epsilon/\Omega(\sqrt{n})$-close and $\epsilon$-far.

The solution of the governing equation representing the drawdown in a horizontal confined aquifer, where groundwater flow is unsteady, is provided in terms of the exponential integral, which is famously known as the Well function. For the computation of this function in practical applications, it is important to develop not only accurate but also a simple approximation that requires evaluation of the fewest possible terms. To that end, introducing Ramanujan's series expression, this work proposes a full-range approximation to the exponential integral using Ramanujan's series for the small argument (u \leq 1) and an approximation based on the bound of the integral for the other range (u \in (1,100]). The evaluation of the proposed approximation results in the most accurate formulae compared to the existing studies, which possess the maximum percentage error of 0.05\%. Further, the proposed formula is much simpler to apply as it contains just the product of exponential and logarithm functions. To further check the efficiency of the proposed approximation, we consider a practical example for evaluating the discrete pumping kernel, which shows the superiority of this approximation over the others. Finally, the authors hope that the proposed efficient approximation can be useful for groundwater and hydrogeological applications.

Recommender system is one of the most important information services on today's Internet. Recently, graph neural networks have become the new state-of-the-art approach of recommender systems. In this survey, we conduct a comprehensive review of the literature in graph neural network-based recommender systems. We first introduce the background and the history of the development of both recommender systems and graph neural networks. For recommender systems, in general, there are four aspects for categorizing existing works: stage, scenario, objective, and application. For graph neural networks, the existing methods consist of two categories, spectral models and spatial ones. We then discuss the motivation of applying graph neural networks into recommender systems, mainly consisting of the high-order connectivity, the structural property of data, and the enhanced supervision signal. We then systematically analyze the challenges in graph construction, embedding propagation/aggregation, model optimization, and computation efficiency. Afterward and primarily, we provide a comprehensive overview of a multitude of existing works of graph neural network-based recommender systems, following the taxonomy above. Finally, we raise discussions on the open problems and promising future directions of this area. We summarize the representative papers along with their codes repositories in //github.com/tsinghua-fib-lab/GNN-Recommender-Systems.

Sampling methods (e.g., node-wise, layer-wise, or subgraph) has become an indispensable strategy to speed up training large-scale Graph Neural Networks (GNNs). However, existing sampling methods are mostly based on the graph structural information and ignore the dynamicity of optimization, which leads to high variance in estimating the stochastic gradients. The high variance issue can be very pronounced in extremely large graphs, where it results in slow convergence and poor generalization. In this paper, we theoretically analyze the variance of sampling methods and show that, due to the composite structure of empirical risk, the variance of any sampling method can be decomposed into \textit{embedding approximation variance} in the forward stage and \textit{stochastic gradient variance} in the backward stage that necessities mitigating both types of variance to obtain faster convergence rate. We propose a decoupled variance reduction strategy that employs (approximate) gradient information to adaptively sample nodes with minimal variance, and explicitly reduces the variance introduced by embedding approximation. We show theoretically and empirically that the proposed method, even with smaller mini-batch sizes, enjoys a faster convergence rate and entails a better generalization compared to the existing methods.

北京阿比特科技有限公司