亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In anomaly detection (AD), one seeks to identify whether a test sample is abnormal, given a data set of normal samples. A recent and promising approach to AD relies on deep generative models, such as variational autoencoders (VAEs), for unsupervised learning of the normal data distribution. In semi-supervised AD (SSAD), the data also includes a small sample of labeled anomalies. In this work, we propose two variational methods for training VAEs for SSAD. The intuitive idea in both methods is to train the encoder to `separate' between latent vectors for normal and outlier data. We show that this idea can be derived from principled probabilistic formulations of the problem, and propose simple and effective algorithms. Our methods can be applied to various data types, as we demonstrate on SSAD datasets ranging from natural images to astronomy and medicine, can be combined with any VAE model architecture, and are naturally compatible with ensembling. When comparing to state-of-the-art SSAD methods that are not specific to particular data types, we obtain marked improvement in outlier detection.

相關內容

Deep learning methods can classify various unstructured data such as images, language, and voice as input data. As the task of classifying anomalies becomes more important in the real world, various methods exist for classifying using deep learning with data collected in the real world. As the task of classifying anomalies becomes more important in the real world, there are various methods for classifying using deep learning with data collected in the real world. Among the various methods, the representative approach is a method of extracting and learning the main features based on a transition model from pre-trained models, and a method of learning an autoencoderbased structure only with normal data and classifying it as abnormal through a threshold value. However, if the dataset is imbalanced, even the state-of-the-arts models do not achieve good performance. This can be addressed by augmenting normal and abnormal features in imbalanced data as features with strong distinction. We use the features of the autoencoder to train latent vectors from low to high dimensionality. We train normal and abnormal data as a feature that has a strong distinction among the features of imbalanced data. We propose a latent vector expansion autoencoder model that improves classification performance at imbalanced data. The proposed method shows performance improvement compared to the basic autoencoder using imbalanced anomaly dataset.

We evaluate the effectiveness of semi-supervised learning (SSL) on a realistic benchmark where data exhibits considerable class imbalance and contains images from novel classes. Our benchmark consists of two fine-grained classification datasets obtained by sampling classes from the Aves and Fungi taxonomy. We find that recently proposed SSL methods provide significant benefits, and can effectively use out-of-class data to improve performance when deep networks are trained from scratch. Yet their performance pales in comparison to a transfer learning baseline, an alternative approach for learning from a few examples. Furthermore, in the transfer setting, while existing SSL methods provide improvements, the presence of out-of-class is often detrimental. In this setting, standard fine-tuning followed by distillation-based self-training is the most robust. Our work suggests that semi-supervised learning with experts on realistic datasets may require different strategies than those currently prevalent in the literature.

Applying artificial intelligence techniques in medical imaging is one of the most promising areas in medicine. However, most of the recent success in this area highly relies on large amounts of carefully annotated data, whereas annotating medical images is a costly process. In this paper, we propose a novel method, called FocalMix, which, to the best of our knowledge, is the first to leverage recent advances in semi-supervised learning (SSL) for 3D medical image detection. We conducted extensive experiments on two widely used datasets for lung nodule detection, LUNA16 and NLST. Results show that our proposed SSL methods can achieve a substantial improvement of up to 17.3% over state-of-the-art supervised learning approaches with 400 unlabeled CT scans.

We introduce a simple, yet powerful student-teacher framework for the challenging problem of unsupervised anomaly detection and pixel-precise anomaly segmentation in high-resolution images. To circumvent the need for prior data labeling, student networks are trained to regress the output of a descriptive teacher network that was pretrained on a large dataset of patches from natural images. Anomalies are detected when the student networks fail to generalize outside the manifold of anomaly-free training data, i.e., when the output of the student networks differ from that of the teacher network. Additionally, the intrinsic uncertainty in the student networks can be used as a scoring function that indicates anomalies. We compare our method to a large number of existing deep-learning-based methods for unsupervised anomaly detection. Our experiments demonstrate improvements over state-of-the-art methods on a number of real-world datasets, including the recently introduced MVTec Anomaly Detection dataset that was specifically designed to benchmark anomaly segmentation algorithms.

Outlier detection is an important topic in machine learning and has been used in a wide range of applications. In this paper, we approach outlier detection as a binary-classification issue by sampling potential outliers from a uniform reference distribution. However, due to the sparsity of data in high-dimensional space, a limited number of potential outliers may fail to provide sufficient information to assist the classifier in describing a boundary that can separate outliers from normal data effectively. To address this, we propose a novel Single-Objective Generative Adversarial Active Learning (SO-GAAL) method for outlier detection, which can directly generate informative potential outliers based on the mini-max game between a generator and a discriminator. Moreover, to prevent the generator from falling into the mode collapsing problem, the stop node of training should be determined when SO-GAAL is able to provide sufficient information. But without any prior information, it is extremely difficult for SO-GAAL. Therefore, we expand the network structure of SO-GAAL from a single generator to multiple generators with different objectives (MO-GAAL), which can generate a reasonable reference distribution for the whole dataset. We empirically compare the proposed approach with several state-of-the-art outlier detection methods on both synthetic and real-world datasets. The results show that MO-GAAL outperforms its competitors in the majority of cases, especially for datasets with various cluster types or high irrelevant variable ratio.

It is important to detect anomalous inputs when deploying machine learning systems. The use of larger and more complex inputs in deep learning magnifies the difficulty of distinguishing between anomalous and in-distribution examples. At the same time, diverse image and text data are available in enormous quantities. We propose leveraging these data to improve deep anomaly detection by training anomaly detectors against an auxiliary dataset of outliers, an approach we call Outlier Exposure (OE). This enables anomaly detectors to generalize and detect unseen anomalies. In extensive experiments on natural language processing and small- and large-scale vision tasks, we find that Outlier Exposure significantly improves detection performance. We also observe that cutting-edge generative models trained on CIFAR-10 may assign higher likelihoods to SVHN images than to CIFAR-10 images; we use OE to mitigate this issue. We also analyze the flexibility and robustness of Outlier Exposure, and identify characteristics of the auxiliary dataset that improve performance.

In machine learning, novelty detection is the task of identifying novel unseen data. During training, only samples from the normal class are available. Test samples are classified as normal or abnormal by assignment of a novelty score. Here we propose novelty detection methods based on training variational autoencoders (VAEs) on normal data. Since abnormal samples are not used during training, we define novelty metrics based on the (partially complementary) assumptions that the VAE is less capable of reconstructing abnormal samples well; that abnormal samples more strongly violate the VAE regularizer; and that abnormal samples differ from normal samples not only in input-feature space, but also in the VAE latent space and VAE output. These approaches, combined with various possibilities of using (e.g. sampling) the probabilistic VAE to obtain scalar novelty scores, yield a large family of methods. We apply these methods to magnetic resonance imaging, namely to the detection of diffusion-space (q-space) abnormalities in diffusion MRI scans of multiple sclerosis patients, i.e. to detect multiple sclerosis lesions without using any lesion labels for training. Many of our methods outperform previously proposed q-space novelty detection methods. We also evaluate the proposed methods on the MNIST handwritten digits dataset and show that many of them are able to outperform the state of the art.

We introduce and tackle the problem of zero-shot object detection (ZSD), which aims to detect object classes which are not observed during training. We work with a challenging set of object classes, not restricting ourselves to similar and/or fine-grained categories as in prior works on zero-shot classification. We present a principled approach by first adapting visual-semantic embeddings for ZSD. We then discuss the problems associated with selecting a background class and motivate two background-aware approaches for learning robust detectors. One of these models uses a fixed background class and the other is based on iterative latent assignments. We also outline the challenge associated with using a limited number of training classes and propose a solution based on dense sampling of the semantic label space using auxiliary data with a large number of categories. We propose novel splits of two standard detection datasets - MSCOCO and VisualGenome, and present extensive empirical results in both the traditional and generalized zero-shot settings to highlight the benefits of the proposed methods. We provide useful insights into the algorithm and conclude by posing some open questions to encourage further research.

Deep CNN-based object detection systems have achieved remarkable success on several large-scale object detection benchmarks. However, training such detectors requires a large number of labeled bounding boxes, which are more difficult to obtain than image-level annotations. Previous work addresses this issue by transforming image-level classifiers into object detectors. This is done by modeling the differences between the two on categories with both image-level and bounding box annotations, and transferring this information to convert classifiers to detectors for categories without bounding box annotations. We improve this previous work by incorporating knowledge about object similarities from visual and semantic domains during the transfer process. The intuition behind our proposed method is that visually and semantically similar categories should exhibit more common transferable properties than dissimilar categories, e.g. a better detector would result by transforming the differences between a dog classifier and a dog detector onto the cat class, than would by transforming from the violin class. Experimental results on the challenging ILSVRC2013 detection dataset demonstrate that each of our proposed object similarity based knowledge transfer methods outperforms the baseline methods. We found strong evidence that visual similarity and semantic relatedness are complementary for the task, and when combined notably improve detection, achieving state-of-the-art detection performance in a semi-supervised setting.

Zero shot learning in Image Classification refers to the setting where images from some novel classes are absent in the training data but other information such as natural language descriptions or attribute vectors of the classes are available. This setting is important in the real world since one may not be able to obtain images of all the possible classes at training. While previous approaches have tried to model the relationship between the class attribute space and the image space via some kind of a transfer function in order to model the image space correspondingly to an unseen class, we take a different approach and try to generate the samples from the given attributes, using a conditional variational autoencoder, and use the generated samples for classification of the unseen classes. By extensive testing on four benchmark datasets, we show that our model outperforms the state of the art, particularly in the more realistic generalized setting, where the training classes can also appear at the test time along with the novel classes.

北京阿比特科技有限公司