Large-scale pre-trained models have achieved remarkable success in various computer vision tasks. A standard approach to leverage these models is to fine-tune all model parameters for downstream tasks, which poses challenges in terms of computational and storage costs. Recently, inspired by Natural Language Processing (NLP), parameter-efficient transfer learning has been successfully applied to vision tasks. However, most existing techniques primarily focus on single-task adaptation, and despite limited research on multi-task adaptation, these methods often exhibit suboptimal training and inference efficiency. In this paper, we first propose an once-for-all Vision Multi-Task Adapter (VMT-Adapter), which strikes approximately O(1) training and inference efficiency w.r.t task number. Concretely, VMT-Adapter shares the knowledge from multiple tasks to enhance cross-task interaction while preserves task-specific knowledge via independent knowledge extraction modules. Notably, since task-specific modules require few parameters, VMT-Adapter can handle an arbitrary number of tasks with a negligible increase of trainable parameters. We also propose VMT-Adapter-Lite, which further reduces the trainable parameters by learning shared parameters between down- and up-projections. Extensive experiments on four dense scene understanding tasks demonstrate the superiority of VMT-Adapter(-Lite), achieving a 3.96%(1.34%) relative improvement compared to single-task full fine-tuning, while utilizing merely ~1% (0.36%) trainable parameters of the pre-trained model.
Generalization capabilities of learning-based medical image segmentation across domains are currently limited by the performance degradation caused by the domain shift, particularly for ultrasound (US) imaging. The quality of US images heavily relies on carefully tuned acoustic parameters, which vary across sonographers, machines, and settings. To improve the generalizability on US images across domains, we propose MI-SegNet, a novel mutual information (MI) based framework to explicitly disentangle the anatomical and domain feature representations; therefore, robust domain-independent segmentation can be expected. Two encoders are employed to extract the relevant features for the disentanglement. The segmentation only uses the anatomical feature map for its prediction. In order to force the encoders to learn meaningful feature representations a cross-reconstruction method is used during training. Transformations, specific to either domain or anatomy are applied to guide the encoders in their respective feature extraction task. Additionally, any MI present in both feature maps is punished to further promote separate feature spaces. We validate the generalizability of the proposed domain-independent segmentation approach on several datasets with varying parameters and machines. Furthermore, we demonstrate the effectiveness of the proposed MI-SegNet serving as a pre-trained model by comparing it with state-of-the-art networks.
Recent works have shown that by using large pre-trained models along with learnable prompts, rehearsal-free methods for class-incremental learning (CIL) settings can achieve superior performance to prominent rehearsal-based ones. Rehearsal-free CIL methods struggle with distinguishing classes from different tasks, as those are not trained together. In this work we propose a regularization method based on virtual outliers to tighten decision boundaries of the classifier, such that confusion of classes among different tasks is mitigated. Recent prompt-based methods often require a pool of task-specific prompts, in order to prevent overwriting knowledge of previous tasks with that of the new task, leading to extra computation in querying and composing an appropriate prompt from the pool. This additional cost can be eliminated, without sacrificing accuracy, as we reveal in the paper. We illustrate that a simplified prompt-based method can achieve results comparable to previous state-of-the-art (SOTA) methods equipped with a prompt pool, using much less learnable parameters and lower inference cost. Our regularization method has demonstrated its compatibility with different prompt-based methods, boosting those previous SOTA rehearsal-free CIL methods' accuracy on the ImageNet-R and CIFAR-100 benchmarks. Our source code is available at //github.com/jpmorganchase/ovor.
Recent advancements in large language models have sparked interest in their extraordinary and near-superhuman capabilities, leading researchers to explore methods for evaluating and optimizing these abilities, which is called superalignment. In this context, our paper delves into the realm of vision foundation models, focusing on the concept of weak-to-strong generalization, which involves using a weaker model to supervise a stronger one, aiming to enhance the latter's capabilities beyond the former's limits. We introduce a novel and adaptively adjustable loss function for weak-to-strong supervision. Our comprehensive experiments span various scenarios, including few-shot learning, transfer learning, noisy label learning, and common knowledge distillation settings. The results are striking: our approach not only exceeds the performance benchmarks set by strong-to-strong generalization but also surpasses the outcomes of fine-tuning strong models with whole datasets. This compelling evidence underscores the significant potential of weak-to-strong generalization, showcasing its capability to substantially elevate the performance of vision foundation models. The code is available at //github.com/ggjy/vision_weak_to_strong.
Vision Transformers (ViTs) have emerged as powerful models in the field of computer vision, delivering superior performance across various vision tasks. However, the high computational complexity poses a significant barrier to their practical applications in real-world scenarios. Motivated by the fact that not all tokens contribute equally to the final predictions and fewer tokens bring less computational cost, reducing redundant tokens has become a prevailing paradigm for accelerating vision transformers. However, we argue that it is not optimal to either only reduce inattentive redundancy by token pruning, or only reduce duplicative redundancy by token merging. To this end, in this paper we propose a novel acceleration framework, namely token Pruning & Pooling Transformers (PPT), to adaptively tackle these two types of redundancy in different layers. By heuristically integrating both token pruning and token pooling techniques in ViTs without additional trainable parameters, PPT effectively reduces the model complexity while maintaining its predictive accuracy. For example, PPT reduces over 37% FLOPs and improves the throughput by over 45% for DeiT-S without any accuracy drop on the ImageNet dataset. The code is available at //github.com/xjwu1024/PPT and //github.com/mindspore-lab/models/
Large language models are increasingly integrated with external tools and APIs like ChatGPT plugins to extend their capability beyond language-centric tasks. However, today's LLM inference systems are designed for standalone LLMs. They treat API calls as new requests, causing unnecessary recomputation of already computed contexts, which accounts for 37-40% of total model forwarding time. This paper presents APIServe, the first LLM inference framework targeting API-augmented LLMs. APISERVE minimizes the GPU resource waste caused by API calls and dedicates saved memory for serving more requests. APISERVE improves the overall serving throughput by 1.6x and completes 2x more requests per second compared to the state-of-the-art LLM inference systems.
Large language models (LLMs) are not amenable to frequent re-training, due to high training costs arising from their massive scale. However, updates are necessary to endow LLMs with new skills and keep them up-to-date with rapidly evolving human knowledge. This paper surveys recent works on continual learning for LLMs. Due to the unique nature of LLMs, we catalog continue learning techniques in a novel multi-staged categorization scheme, involving continual pretraining, instruction tuning, and alignment. We contrast continual learning for LLMs with simpler adaptation methods used in smaller models, as well as with other enhancement strategies like retrieval-augmented generation and model editing. Moreover, informed by a discussion of benchmarks and evaluation, we identify several challenges and future work directions for this crucial task.
Post-training quantization (PTQ) has played a key role in compressing large language models (LLMs) with ultra-low costs. However, existing PTQ methods only focus on handling the outliers within one layer or one block, which ignores the dependency of blocks and leads to severe performance degradation in low-bit settings. In this paper, we propose CBQ, a cross-block reconstruction-based PTQ method for LLMs. CBQ employs a cross-block dependency using a homologous reconstruction scheme, establishing long-range dependencies across multiple blocks to minimize error accumulation. Furthermore, CBQ incorporates a coarse-to-fine preprocessing (CFP) strategy for suppressing weight and activation outliers, coupled with an adaptive LoRA-Rounding technique for precise weight quantization. These innovations enable CBQ to not only handle extreme outliers effectively but also improve overall quantization accuracy. Extensive experiments show that CBQ achieves superior low-bit quantization (W4A4, W4A8, W2A16) and outperforms existing state-of-the-art methods across various LLMs and datasets. Notably, CBQ quantizes the 4-bit LLAMA1-65B model within only 4.3 hours on a single GPU, achieving a commendable tradeoff between performance and quantization efficiency.
Large monolithic generative models trained on massive amounts of data have become an increasingly dominant approach in AI research. In this paper, we argue that we should instead construct large generative systems by composing smaller generative models together. We show how such a compositional generative approach enables us to learn distributions in a more data-efficient manner, enabling generalization to parts of the data distribution unseen at training time. We further show how this enables us to program and construct new generative models for tasks completely unseen at training. Finally, we show that in many cases, we can discover separate compositional components from data.
We propose to pre-train a unified language model for both autoencoding and partially autoregressive language modeling tasks using a novel training procedure, referred to as a pseudo-masked language model (PMLM). Given an input text with masked tokens, we rely on conventional masks to learn inter-relations between corrupted tokens and context via autoencoding, and pseudo masks to learn intra-relations between masked spans via partially autoregressive modeling. With well-designed position embeddings and self-attention masks, the context encodings are reused to avoid redundant computation. Moreover, conventional masks used for autoencoding provide global masking information, so that all the position embeddings are accessible in partially autoregressive language modeling. In addition, the two tasks pre-train a unified language model as a bidirectional encoder and a sequence-to-sequence decoder, respectively. Our experiments show that the unified language models pre-trained using PMLM achieve new state-of-the-art results on a wide range of natural language understanding and generation tasks across several widely used benchmarks.
Learning with limited data is a key challenge for visual recognition. Few-shot learning methods address this challenge by learning an instance embedding function from seen classes and apply the function to instances from unseen classes with limited labels. This style of transfer learning is task-agnostic: the embedding function is not learned optimally discriminative with respect to the unseen classes, where discerning among them is the target task. In this paper, we propose a novel approach to adapt the embedding model to the target classification task, yielding embeddings that are task-specific and are discriminative. To this end, we employ a type of self-attention mechanism called Transformer to transform the embeddings from task-agnostic to task-specific by focusing on relating instances from the test instances to the training instances in both seen and unseen classes. Our approach also extends to both transductive and generalized few-shot classification, two important settings that have essential use cases. We verify the effectiveness of our model on two standard benchmark few-shot classification datasets --- MiniImageNet and CUB, where our approach demonstrates state-of-the-art empirical performance.