亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The aim of this paper is to provide a theoretically founded investigation of state-of-the-art learning approaches for inverse problems. We give an extended definition of regularization methods and their convergence in terms of the underlying data distributions, which paves the way for future theoretical studies. Based on a simple spectral learning model previously introduced for supervised learning, we investigate some key properties of different learning paradigms for inverse problems, which can be formulated independently of specific architectures. In particular we investigate the regularization properties, bias, and critical dependence on training data distributions. Moreover, our framework allows to highlight and compare the specific behavior of the different paradigms in the infinite-dimensional limit.

相關內容

We describe a version of the FGLM algorithm that can be used to compute generic fibers of positive-dimensional polynomial ideals. It combines the FGLM algorithm with a Hensel lifting strategy. We show that this algorithm has a complexity quasi-linear in the number of lifting steps. Some provided experimental data also demonstrates the practical efficacy of our algorithm. Additionally, we sketch a related Hensel lifting method to compute Gr\"obner bases using so-called tracers.

In this paper we adopt a representation-centric perspective on exploration in reinforcement learning, viewing exploration fundamentally as a density estimation problem. We investigate the effectiveness of clustering representations for exploration in 3-D environments, based on the observation that the importance of pixel changes between transitions is less pronounced in 3-D environments compared to 2-D environments, where pixel changes between transitions are typically distinct and significant. We propose a method that performs episodic and global clustering on random representations and on pre-trained DINO representations to count states, i.e, estimate pseudo-counts. Surprisingly, even random features can be clustered effectively to count states in 3-D environments, however when these become visually more complex, pre-trained DINO representations are more effective thanks to the pre-trained inductive biases in the representations. Overall, this presents a pathway for integrating pre-trained biases into exploration. We evaluate our approach on the VizDoom and Habitat environments, demonstrating that our method surpasses other well-known exploration methods in these settings.

Supervised fairness-aware machine learning under distribution shifts is an emerging field that addresses the challenge of maintaining equitable and unbiased predictions when faced with changes in data distributions from source to target domains. In real-world applications, machine learning models are often trained on a specific dataset but deployed in environments where the data distribution may shift over time due to various factors. This shift can lead to unfair predictions, disproportionately affecting certain groups characterized by sensitive attributes, such as race and gender. In this survey, we provide a summary of various types of distribution shifts and comprehensively investigate existing methods based on these shifts, highlighting six commonly used approaches in the literature. Additionally, this survey lists publicly available datasets and evaluation metrics for empirical studies. We further explore the interconnection with related research fields, discuss the significant challenges, and identify potential directions for future studies.

In this paper, we introduce a kNN-based regression method that synergizes the scalability and adaptability of traditional non-parametric kNN models with a novel variable selection technique. This method focuses on accurately estimating the conditional mean and variance of random response variables, thereby effectively characterizing conditional distributions across diverse scenarios.Our approach incorporates a robust uncertainty quantification mechanism, leveraging our prior estimation work on conditional mean and variance. The employment of kNN ensures scalable computational efficiency in predicting intervals and statistical accuracy in line with optimal non-parametric rates. Additionally, we introduce a new kNN semi-parametric algorithm for estimating ROC curves, accounting for covariates. For selecting the smoothing parameter k, we propose an algorithm with theoretical guarantees.Incorporation of variable selection enhances the performance of the method significantly over conventional kNN techniques in various modeling tasks. We validate the approach through simulations in low, moderate, and high-dimensional covariate spaces. The algorithm's effectiveness is particularly notable in biomedical applications as demonstrated in two case studies. Concluding with a theoretical analysis, we highlight the consistency and convergence rate of our method over traditional kNN models, particularly when the underlying regression model takes values in a low-dimensional space.

This paper introduces a novel numerical approach to achieving smooth lane-change trajectories in autonomous driving scenarios. Our trajectory generation approach leverages particle swarm optimization (PSO) techniques, incorporating Neural Network (NN) predictions for trajectory refinement. The generation of smooth and dynamically feasible trajectories for the lane change maneuver is facilitated by combining polynomial curve fitting with particle propagation, which can account for vehicle dynamics. The proposed planning algorithm is capable of determining feasible trajectories with real-time computation capability. We conduct comparative analyses with two baseline methods for lane changing, involving analytic solutions and heuristic techniques in numerical simulations. The simulation results validate the efficacy and effectiveness of our proposed approach.

We examine machine learning models in a setup where individuals have the choice to share optional personal information with a decision-making system, as seen in modern insurance pricing models. Some users consent to their data being used whereas others object and keep their data undisclosed. In this work, we show that the decision not to share data can be considered as information in itself that should be protected to respect users' privacy. This observation raises the overlooked problem of how to ensure that users who protect their personal data do not suffer any disadvantages as a result. To address this problem, we formalize protection requirements for models which only use the information for which active user consent was obtained. This excludes implicit information contained in the decision to share data or not. We offer the first solution to this problem by proposing the notion of Protected User Consent (PUC), which we prove to be loss-optimal under our protection requirement. We observe that privacy and performance are not fundamentally at odds with each other and that it is possible for a decision maker to benefit from additional data while respecting users' consent. To learn PUC-compliant models, we devise a model-agnostic data augmentation strategy with finite sample convergence guarantees. Finally, we analyze the implications of PUC on challenging real datasets, tasks, and models.

In the realm of interactive machine-learning systems, the provision of explanations serves as a vital aid in the processes of debugging and enhancing prediction models. However, the extent to which various global model-centric and data-centric explanations can effectively assist domain experts in detecting and resolving potential data-related issues for the purpose of model improvement has remained largely unexplored. In this technical report, we summarise the key findings of our two user studies. Our research involved a comprehensive examination of the impact of global explanations rooted in both data-centric and model-centric perspectives within systems designed to support healthcare experts in optimising machine learning models through both automated and manual data configurations. To empirically investigate these dynamics, we conducted two user studies, comprising quantitative analysis involving a sample size of 70 healthcare experts and qualitative assessments involving 30 healthcare experts. These studies were aimed at illuminating the influence of different explanation types on three key dimensions: trust, understandability, and model improvement. Results show that global model-centric explanations alone are insufficient for effectively guiding users during the intricate process of data configuration. In contrast, data-centric explanations exhibited their potential by enhancing the understanding of system changes that occur post-configuration. However, a combination of both showed the highest level of efficacy for fostering trust, improving understandability, and facilitating model enhancement among healthcare experts. We also present essential implications for developing interactive machine-learning systems driven by explanations. These insights can guide the creation of more effective systems that empower domain experts to harness the full potential of machine learning

The advent of foundation models has revolutionized the fields of natural language processing and computer vision, paving the way for their application in autonomous driving (AD). This survey presents a comprehensive review of more than 40 research papers, demonstrating the role of foundation models in enhancing AD. Large language models contribute to planning and simulation in AD, particularly through their proficiency in reasoning, code generation and translation. In parallel, vision foundation models are increasingly adapted for critical tasks such as 3D object detection and tracking, as well as creating realistic driving scenarios for simulation and testing. Multi-modal foundation models, integrating diverse inputs, exhibit exceptional visual understanding and spatial reasoning, crucial for end-to-end AD. This survey not only provides a structured taxonomy, categorizing foundation models based on their modalities and functionalities within the AD domain but also delves into the methods employed in current research. It identifies the gaps between existing foundation models and cutting-edge AD approaches, thereby charting future research directions and proposing a roadmap for bridging these gaps.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

北京阿比特科技有限公司