亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Following the great success of Machine Learning (ML), especially Deep Neural Networks (DNNs), in many research domains in 2010s, several ML-based approaches were proposed for detection in large inverse linear problems, e.g., massive MIMO systems. The main motivation behind is that the complexity of Maximum A-Posteriori (MAP) detection grows exponentially with system dimensions. Instead of using DNNs, essentially being a black-box, we take a slightly different approach and introduce a probabilistic Continuous relaxation of disCrete variables to MAP detection. Enabling close approximation and continuous optimization, we derive an iterative detection algorithm: Concrete MAP Detection (CMD). Furthermore, extending CMD by the idea of deep unfolding into CMDNet, we allow for (online) optimization of a small number of parameters to different working points while limiting complexity. In contrast to recent DNN-based approaches, we select the optimization criterion and output of CMDNet based on information theory and are thus able to learn approximate probabilities of the individual optimal detector. This is crucial for soft decoding in today's communication systems. Numerical simulation results in MIMO systems reveal CMDNet to feature a promising accuracy complexity trade-off compared to State of the Art. Notably, we demonstrate CMDNet's soft outputs to be reliable for decoders.

相關內容

The integration of algorithmic components into neural architectures has gained increased attention recently, as it allows training neural networks with new forms of supervision such as ordering constraints or silhouettes instead of using ground truth labels. Many approaches in the field focus on the continuous relaxation of a specific task and show promising results in this context. But the focus on single tasks also limits the applicability of the proposed concepts to a narrow range of applications. In this work, we build on those ideas to propose an approach that allows to integrate algorithms into end-to-end trainable neural network architectures based on a general approximation of discrete conditions. To this end, we relax these conditions in control structures such as conditional statements, loops, and indexing, so that resulting algorithms are smoothly differentiable. To obtain meaningful gradients, each relevant variable is perturbed via logistic distributions and the expectation value under this perturbation is approximated. We evaluate the proposed continuous relaxation model on four challenging tasks and show that it can keep up with relaxations specifically designed for each individual task.

We study the problem of synthesizing programs that include machine learning components such as deep neural networks (DNNs). We focus on statistical properties, which are properties expected to hold with high probability -- e.g., that an image classification model correctly identifies people in images with high probability. We propose novel algorithms for sketching and synthesizing such programs by leveraging ideas from statistical learning theory to provide statistical soundness guarantees. We evaluate our approach on synthesizing list processing programs that include DNN components used to process image inputs, as well as case studies on image classification and on precision medicine. Our results demonstrate that our approach can be used to synthesize programs with probabilistic guarantees.

PAC-Bayesian bounds are known to be tight and informative when studying the generalization ability of randomized classifiers. However, when applied to some family of deterministic models such as neural networks, they require a loose and costly derandomization step. As an alternative to this step, we introduce new PAC-Bayesian generalization bounds that have the originality to provide disintegrated bounds, i.e., they give guarantees over one single hypothesis instead of the usual averaged analysis. Our bounds are easily optimizable and can be used to design learning algorithms. We illustrate the interest of our result on neural networks and show a significant practical improvement over the state-of-the-art framework.

Dynamic community detection is the hotspot and basic problem of complex network and artificial intelligence research in recent years. It is necessary to maximize the accuracy of clustering as the network structure changes, but also to minimize the two consecutive clustering differences between the two results. There is a trade-off relationship between these two objectives. In this paper, we propose a Feature Transfer Based Multi-Objective Optimization Genetic Algorithm (TMOGA) based on transfer learning and traditional multi-objective evolutionary algorithm framework. The main idea is to extract stable features from past community structures, retain valuable feature information, and integrate this feature information into current optimization processes to improve the evolutionary algorithms. Additionally, a new theoretical framework is proposed in this paper to analyze community detection problem based on information theory. Then, we exploit this framework to prove the rationality of TMOGA. Finally, the experimental results show that our algorithm can achieve better clustering effects compared with the state-of-the-art dynamic network community detection algorithms in diverse test problems.

We introduce the algorithm Bayesian Optimization (BO) with Fictitious Play (BOFiP) for the optimization of high dimensional black box functions. BOFiP decomposes the original, high dimensional, space into several sub-spaces defined by non-overlapping sets of dimensions. These sets are randomly generated at the start of the algorithm, and they form a partition of the dimensions of the original space. BOFiP searches the original space with alternating BO, within sub-spaces, and information exchange among sub-spaces, to update the sub-space function evaluation. The basic idea is to distribute the high dimensional optimization across low dimensional sub-spaces, where each sub-space is a player in an equal interest game. At each iteration, BO produces approximate best replies that update the players belief distribution. The belief update and BO alternate until a stopping condition is met. High dimensional problems are common in real applications, and several contributions in the BO literature have highlighted the difficulty in scaling to high dimensions due to the computational complexity associated to the estimation of the model hyperparameters. Such complexity is exponential in the problem dimension, resulting in substantial loss of performance for most techniques with the increase of the input dimensionality. We compare BOFiP to several state-of-the-art approaches in the field of high dimensional black box optimization. The numerical experiments show the performance over three benchmark objective functions from 20 up to 1000 dimensions. A neural network architecture design problem is tested with 42 up to 911 nodes in 6 up to 92 layers, respectively, resulting into networks with 500 up to 10,000 weights. These sets of experiments empirically show that BOFiP outperforms its competitors, showing consistent performance across different problems and increasing problem dimensionality.

An effective and efficient architecture performance evaluation scheme is essential for the success of Neural Architecture Search (NAS). To save computational cost, most of existing NAS algorithms often train and evaluate intermediate neural architectures on a small proxy dataset with limited training epochs. But it is difficult to expect an accurate performance estimation of an architecture in such a coarse evaluation way. This paper advocates a new neural architecture evaluation scheme, which aims to determine which architecture would perform better instead of accurately predict the absolute architecture performance. Therefore, we propose a \textbf{relativistic} architecture performance predictor in NAS (ReNAS). We encode neural architectures into feature tensors, and further refining the representations with the predictor. The proposed relativistic performance predictor can be deployed in discrete searching methods to search for the desired architectures without additional evaluation. Experimental results on NAS-Bench-101 dataset suggests that, sampling 424 ($0.1\%$ of the entire search space) neural architectures and their corresponding validation performance is already enough for learning an accurate architecture performance predictor. The accuracies of our searched neural architectures on NAS-Bench-101 and NAS-Bench-201 datasets are higher than that of the state-of-the-art methods and show the priority of the proposed method.

There is growing interest in object detection in advanced driver assistance systems and autonomous robots and vehicles. To enable such innovative systems, we need faster object detection. In this work, we investigate the trade-off between accuracy and speed with domain-specific approximations, i.e. category-aware image size scaling and proposals scaling, for two state-of-the-art deep learning-based object detection meta-architectures. We study the effectiveness of applying approximation both statically and dynamically to understand the potential and the applicability of them. By conducting experiments on the ImageNet VID dataset, we show that domain-specific approximation has great potential to improve the speed of the system without deteriorating the accuracy of object detectors, i.e. up to 7.5x speedup for dynamic domain-specific approximation. To this end, we present our insights toward harvesting domain-specific approximation as well as devise a proof-of-concept runtime, AutoFocus, that exploits dynamic domain-specific approximation.

Data augmentation has been widely used for training deep learning systems for medical image segmentation and plays an important role in obtaining robust and transformation-invariant predictions. However, it has seldom been used at test time for segmentation and not been formulated in a consistent mathematical framework. In this paper, we first propose a theoretical formulation of test-time augmentation for deep learning in image recognition, where the prediction is obtained through estimating its expectation by Monte Carlo simulation with prior distributions of parameters in an image acquisition model that involves image transformations and noise. We then propose a novel uncertainty estimation method based on the formulated test-time augmentation. Experiments with segmentation of fetal brains and brain tumors from 2D and 3D Magnetic Resonance Images (MRI) showed that 1) our test-time augmentation outperforms a single-prediction baseline and dropout-based multiple predictions, and 2) it provides a better uncertainty estimation than calculating the model-based uncertainty alone and helps to reduce overconfident incorrect predictions.

Although it is well believed for years that modeling relations between objects would help object recognition, there has not been evidence that the idea is working in the deep learning era. All state-of-the-art object detection systems still rely on recognizing object instances individually, without exploiting their relations during learning. This work proposes an object relation module. It processes a set of objects simultaneously through interaction between their appearance feature and geometry, thus allowing modeling of their relations. It is lightweight and in-place. It does not require additional supervision and is easy to embed in existing networks. It is shown effective on improving object recognition and duplicate removal steps in the modern object detection pipeline. It verifies the efficacy of modeling object relations in CNN based detection. It gives rise to the first fully end-to-end object detector.

While most steps in the modern object detection methods are learnable, the region feature extraction step remains largely hand-crafted, featured by RoI pooling methods. This work proposes a general viewpoint that unifies existing region feature extraction methods and a novel method that is end-to-end learnable. The proposed method removes most heuristic choices and outperforms its RoI pooling counterparts. It moves further towards fully learnable object detection.

北京阿比特科技有限公司