亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present an extended validation of semi-analytical, semi-empirical covariance matrices for the two-point correlation function (2PCF) on simulated catalogs representative of Luminous Red Galaxies (LRG) data collected during the initial two months of operations of the Stage-IV ground-based Dark Energy Spectroscopic Instrument (DESI). We run the pipeline on multiple extended Zel'dovich (EZ) mock galaxy catalogs with the corresponding cuts applied and compare the results with the mock sample covariance to assess the accuracy and its fluctuations. We propose an extension of the previously developed formalism for catalogs processed with standard reconstruction algorithms. We consider methods for comparing covariance matrices in detail, highlighting their interpretation and statistical properties caused by sample variance, in particular, nontrivial expectation values of certain metrics even when the external covariance estimate is perfect. With improved mocks and validation techniques, we confirm a good agreement between our predictions and sample covariance. This allows one to generate covariance matrices for comparable datasets without the need to create numerous mock galaxy catalogs with matching clustering, only requiring 2PCF measurements from the data itself. The code used in this paper is publicly available at //github.com/oliverphilcox/RascalC.

相關內容

We present a multigrid algorithm to solve efficiently the large saddle-point systems of equations that typically arise in PDE-constrained optimization under uncertainty. The algorithm is based on a collective smoother that at each iteration sweeps over the nodes of the computational mesh, and solves a reduced saddle-point system whose size depends on the number $N$ of samples used to discretized the probability space. We show that this reduced system can be solved with optimal $O(N)$ complexity. We test the multigrid method on three problems: a linear-quadratic problem for which the multigrid method is used to solve directly the linear optimality system; a nonsmooth problem with box constraints and $L^1$-norm penalization on the control, in which the multigrid scheme is used within a semismooth Newton iteration; a risk-adverse problem with the smoothed CVaR risk measure where the multigrid method is called within a preconditioned Newton iteration. In all cases, the multigrid algorithm exhibits very good performances and robustness with respect to all parameters of interest.

We investigate a class of parametric elliptic eigenvalue problems with homogeneous essential boundary conditions where the coefficients (and hence the solution $u$) may depend on a parameter $y$. For the efficient approximate evaluation of parameter sensitivities of the first eigenpairs on the entire parameter space we propose and analyse Gevrey class and analytic regularity of the solution with respect to the parameters. This is made possible by a novel proof technique which we introduce and demonstrate in this paper. Our regularity result has immediate implications for convergence of various numerical schemes for parametric elliptic eigenvalue problems, in particular, for elliptic eigenvalue problems with infinitely many parameters arising from elliptic differential operators with random coefficients.

In classical statistics, a well known paradigm consists in establishing asymptotic equivalence between an experiment of i.i.d. observations and a Gaussian shift experiment, with the aim of obtaining optimal estimators in the former complicated model from the latter simpler model. In particular, a statistical experiment consisting of $n$ i.i.d observations from d-dimensional multinomial distributions can be well approximated by an experiment consisting of $d-1$ dimensional Gaussian distributions. In a quantum version of the result, it has been shown that a collection of $n$ qudits (d-dimensional quantum states) of full rank can be well approximated by a quantum system containing a classical part, which is a $d-1$ dimensional Gaussian distribution, and a quantum part containing an ensemble of $d(d-1)/2$ shifted thermal states. In this paper, we obtain a generalization of this result when the qudits are not of full rank. We show that when the rank of the qudits is $r$, then the limiting experiment consists of an $r-1$ dimensional Gaussian distribution and an ensemble of both shifted pure and shifted thermal states. For estimation purposes, we establish an asymptotic minimax result in the limiting Gaussian model. Analogous results are then obtained for estimation of a low-rank qudit from an ensemble of identically prepared, independent quantum systems, using the local asymptotic equivalence result. We also consider the problem of estimation of a linear functional of the quantum state. We construct an estimator for the functional, analyze the risk and use quantum local asymptotic equivalence to show that our estimator is also optimal in the minimax sense.

As the development of formal proofs is a time-consuming task, it is important to devise ways of sharing the already written proofs to prevent wasting time redoing them. One of the challenges in this domain is to translate proofs written in proof assistants based on impredicative logics to proof assistants based on predicative logics, whenever impredicativity is not used in an essential way. In this paper we present a transformation for sharing proofs with a core predicative system supporting prenex universe polymorphism (like in Agda). It consists in trying to elaborate a potentially impredicative term into a predicative universe polymorphic term as general as possible. The use of universe polymorphism is justified by the fact that mapping each universe to a fixed one in the target theory is not sufficient in most cases. During the algorithm, we need to solve unification problems in the equational theory of universe levels. In order to do this, we give a complete characterization of when a single equation admits a most general unifier. This characterization is then employed in an algorithm which uses a constraint-postponement strategy to solve unification problems. The proposed translation is of course partial, but in practice allows one to translate many proofs that do not use impredicativity in an essential way. Indeed, it was implemented in the tool Predicativize and then used to translate semi-automatically many non-trivial developments from Matita's arithmetic library to Agda, including proofs of Bertrand's Postulate and Fermat's Little Theorem, which (as far as we know) were not available in Agda yet.

Statistical techniques are needed to analyse data structures with complex dependencies such that clinically useful information can be extracted. Individual-specific networks, which capture dependencies in complex biological systems, are often summarized by graph-theoretical features. These features, which lend themselves to outcome modelling, can be subject to high variability due to arbitrary decisions in network inference and noise. Correlation-based adjacency matrices often need to be sparsified before meaningful graph-theoretical features can be extracted, requiring the data analysts to determine an optimal threshold.. To address this issue, we propose to incorporate a flexible weighting function over the full range of possible thresholds to capture the variability of graph-theoretical features over the threshold domain. The potential of this approach, which extends concepts from functional data analysis to a graph-theoretical setting, is explored in a plasmode simulation study using real functional magnetic resonance imaging (fMRI) data from the Autism Brain Imaging Data Exchange (ABIDE) Preprocessed initiative. The simulations show that our modelling approach yields accurate estimates of the functional form of the weight function, improves inference efficiency, and achieves a comparable or reduced root mean square prediction error compared to competitor modelling approaches. This assertion holds true in settings where both complex functional forms underlie the outcome-generating process and a universal threshold value is employed. We demonstrate the practical utility of our approach by using resting-state fMRI data to predict biological age in children. Our study establishes the flexible modelling approach as a statistically principled, serious competitor to ad-hoc methods with superior performance.

One of the central problems in neuroscience is understanding how brain structure relates to function. Naively one can relate the direct connections of white matter fiber tracts between brain regions of interest (ROIs) to the increased co-activation in the same pair of ROIs, but the link between structural and functional connectomes (SCs and FCs) has proven to be much more complex. To learn a realistic generative model characterizing population variation in SCs, FCs, and the SC-FC coupling, we develop a graph auto-encoder that we refer to as Staf-GATE. We trained Staf-GATE with data from the Human Connectome Project (HCP) and show state-of-the-art performance in predicting FC and joint generation of SC and FC. In addition, as a crucial component of the proposed approach, we provide a masking-based algorithm to extract interpretable inferences about SC-FC coupling. Our interpretation methods identified important SC subnetworks for FC coupling and relating SC and FC with sex.

Introduction: Oblique Target-rotation in the context of exploratory factor analysis is a relevant method for the investigation of the oblique independent clusters model. It was argued that minimizing single cross-loadings by means of target rotation may lead to large effects of sampling error on the target rotated factor solutions. Method: In order to minimize effects of sampling error on results of Target-rotation we propose to compute the mean cross-loadings for each block of salient loadings of the independent clusters model and to perform target rotation for the block-wise mean cross-loadings. The resulting transformation-matrix is than applied to the complete unrotated loading matrix in order to produce mean Target-rotated factors. Results: A simulation study based on correlated independent factor models revealed that mean oblique Target-rotation resulted in smaller negative bias of factor inter-correlations than conventional Target-rotation based on single loadings, especially when sample size was small and when the number of factors was large. An empirical example revealed that the similarity of Target-rotated factors computed for small subsamples with Target-rotated factors of the total sample was more pronounced for mean Target-rotation than for conventional Target-rotation. Discussion: Mean Target-rotation can be recommended in the context of oblique independent factor models, especially for small samples. An R-script and an SPSS-script for this form of Target-rotation are provided in the Appendix.

By a semi-Lagrangian change of coordinates, the hydrostatic Euler equations describing free-surface sheared flows is rewritten as a system of quasilinear equations, where stability conditions can be determined by the analysis of its hyperbolic structure. This new system can be written as a quasi linear system in time and horizontal variables and involves no more vertical derivatives. However, the coefficients in front of the horizontal derivatives include an integral operator acting on the new vertical variable. The spectrum of these operators is studied in detail, in particular it includes a continuous part. Riemann invariants are then determined as conserved quantities along the characteristic curves. Examples of solutions are provided, in particular stationary solutions and solutions blowing-up in finite time. Eventually, we propose an exact multi-layer $\mathbb{P}_0$-discretization, which could be used to solve numerically this semi-Lagrangian system, and analyze the eigenvalues of the corresponding discretized operator to investigate the hyperbolic nature of the approximated system.

We study a family of distances between functions of a single variable. These distances are examples of integral probability metrics, and have been used previously for comparing probability measures. Special cases include the Earth Mover's Distance and the Kolmogorov Metric. We examine their properties for general signals, proving that they are robust to a broad class of perturbations and that the distance between one-dimensional tomographic projections of a two-dimensional function is bounded by the size of the difference in projection angles. We also establish error bounds for approximating the metric from finite samples, and prove that these approximations are robust to additive Gaussian noise. The results are illustrated in numerical experiments.

In epidemiology and social sciences, propensity score methods are popular for estimating treatment effects using observational data, and multiple imputation is popular for handling covariate missingness. However, how to appropriately use multiple imputation for propensity score analysis is not completely clear. This paper aims to bring clarity on the consistency (or lack thereof) of methods that have been proposed, focusing on the within approach (where the effect is estimated separately in each imputed dataset and then the multiple estimates are combined) and the across approach (where typically propensity scores are averaged across imputed datasets before being used for effect estimation). We show that the within method is valid and can be used with any causal effect estimator that is consistent in the full-data setting. Existing across methods are inconsistent, but a different across method that averages the inverse probability weights across imputed datasets is consistent for propensity score weighting. We also comment on methods that rely on imputing a function of the missing covariate rather than the covariate itself, including imputation of the propensity score and of the probability weight. Based on consistency results and practical flexibility, we recommend generally using the standard within method. Throughout, we provide intuition to make the results meaningful to the broad audience of applied researchers.

北京阿比特科技有限公司