亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Using dominating sets to separate vertices of graphs is a well-studied problem in the larger domain of identification problems. In such problems, the objective is typically to separate any two vertices of a graph by their unique neighbourhoods in a suitably chosen dominating set of the graph. Such a dominating and separating set is often referred to as a \emph{code} in the literature. Depending on the types of dominating and separating sets used, various problems arise under various names in the literature. In this paper, we introduce a new problem in the same realm of identification problems whereby the code, called the \emph{open-separating dominating code}, or the \emph{OSD-code} for short, is a dominating set and uses open neighbourhoods for separating vertices. The paper studies the fundamental properties concerning the existence, hardness and minimality of OSD-codes. Due to the emergence of a close and yet difficult to establish relation of the OSD-codes with another well-studied code in the literature called the open locating dominating codes, or OLD-codes for short, we compare the two on various graph classes. Finally, we also provide an equivalent reformulation of the problem of finding OSD-codes of a graph as a covering problem in a suitable hypergraph and discuss the polyhedra associated with OSD-codes, again in relation to OLD-codes of some graph classes already studied in this context.

相關內容

Image information is restricted by the dynamic range of the detector, which can be addressed using multi-exposure image fusion (MEF). The conventional MEF approach employed in ptychography is often inadequate under conditions of low signal-to-noise ratio (SNR) or variations in illumination intensity. To address this, we developed a Bayesian approach for MEF based on a modified Poisson noise model that considers the background and saturation. Our method outperforms conventional MEF under challenging experimental conditions, as demonstrated by the synthetic and experimental data. Furthermore, this method is versatile and applicable to any imaging scheme requiring high dynamic range (HDR).

Regression models that incorporate smooth functions of predictor variables to explain the relationships with a response variable have gained widespread usage and proved successful in various applications. By incorporating smooth functions of predictor variables, these models can capture complex relationships between the response and predictors while still allowing for interpretation of the results. In situations where the relationships between a response variable and predictors are explored, it is not uncommon to assume that these relationships adhere to certain shape constraints. Examples of such constraints include monotonicity and convexity. The scam package for R has become a popular package to carry out the full fitting of exponential family generalized additive modelling with shape restrictions on smooths. The paper aims to extend the existing framework of shape-constrained generalized additive models (SCAM) to accommodate smooth interactions of covariates, linear functionals of shape-constrained smooths and incorporation of residual autocorrelation. The methods described in this paper are implemented in the recent version of the package scam, available on the Comprehensive R Archive Network (CRAN).

When complex Bayesian models exhibit implausible behaviour, one solution is to assemble available information into an informative prior. Challenges arise as prior information is often only available for the observable quantity, or some model-derived marginal quantity, rather than directly pertaining to the natural parameters in our model. We propose a method for translating available prior information, in the form of an elicited distribution for the observable or model-derived marginal quantity, into an informative joint prior. Our approach proceeds given a parametric class of prior distributions with as yet undetermined hyperparameters, and minimises the difference between the supplied elicited distribution and corresponding prior predictive distribution. We employ a global, multi-stage Bayesian optimisation procedure to locate optimal values for the hyperparameters. Three examples illustrate our approach: a cure-fraction survival model, where censoring implies that the observable quantity is a priori a mixed discrete/continuous quantity; a setting in which prior information pertains to $R^{2}$ -- a model-derived quantity; and a nonlinear regression model.

Bayesian inference for complex models with an intractable likelihood can be tackled using algorithms performing many calls to computer simulators. These approaches are collectively known as "simulation-based inference" (SBI). Recent SBI methods have made use of neural networks (NN) to provide approximate, yet expressive constructs for the unavailable likelihood function and the posterior distribution. However, they do not generally achieve an optimal trade-off between accuracy and computational demand. In this work, we propose an alternative that provides both approximations to the likelihood and the posterior distribution, using structured mixtures of probability distributions. Our approach produces accurate posterior inference when compared to state-of-the-art NN-based SBI methods, while exhibiting a much smaller computational footprint. We illustrate our results on several benchmark models from the SBI literature.

We establish an invariance principle for polynomial functions of $n$ independent high-dimensional random vectors, and also show that the obtained rates are nearly optimal. Both the dimension of the vectors and the degree of the polynomial are permitted to grow with $n$. Specifically, we obtain a finite sample upper bound for the error of approximation by a polynomial of Gaussians, measured in Kolmogorov distance, and extend it to functions that are approximately polynomial in a mean squared error sense. We give a corresponding lower bound that shows the invariance principle holds up to polynomial degree $o(\log n)$. The proof is constructive and adapts an asymmetrisation argument due to V. V. Senatov. As applications, we obtain a higher-order delta method with possibly non-Gaussian limits, and generalise a number of known results on high-dimensional and infinite-order U-statistics, and on fluctuations of subgraph counts.

In many circumstances given an ordered sequence of one or more types of elements/ symbols, the objective is to determine any existence of randomness in occurrence of one of the elements,say type 1 element. Such a method can be useful in determining existence of any non-random pattern in the wins or loses of a player in a series of games played. Existing methods of tests based on total number of runs or tests based on length of longest run (Mosteller (1941)) can be used for testing the null hypothesis of randomness in the entire sequence, and not a specific type of element. Additionally, the Runs Test tends to show results contradictory to the intuition visualised by the graphs of say, win proportions over time due to method used in computation of runs. This paper develops a test approach to address this problem by computing the gaps between two consecutive type 1 elements and thereafter following the idea of "pattern" in occurrence and "directional" trend (increasing, decreasing or constant), employs the use of exact Binomial test, Kenall's Tau and Siegel-Tukey test for scale problem. Further modifications suggested by Jan Vegelius(1982) have been applied in the Siegel Tukey test to adjust for tied ranks and achieve more accurate results. This approach is distribution-free and suitable for small sizes. Also comparisons with the conventional runs test shows the superiority of the proposed approach under the null hypothesis of randomness in the occurrence of type 1 elements.

Causal generative modelling is gaining interest in medical imaging due to its ability to answer interventional and counterfactual queries. Most work focuses on generating counterfactual images that look plausible, using auxiliary classifiers to enforce effectiveness of simulated interventions. We investigate pitfalls in this approach, discovering the issue of attribute amplification, where unrelated attributes are spuriously affected during interventions, leading to biases across protected characteristics and disease status. We show that attribute amplification is caused by the use of hard labels in the counterfactual training process and propose soft counterfactual fine-tuning to mitigate this issue. Our method substantially reduces the amplification effect while maintaining effectiveness of generated images, demonstrated on a large chest X-ray dataset. Our work makes an important advancement towards more faithful and unbiased causal modelling in medical imaging.

In logistic regression modeling, Firth's modified estimator is widely used to address the issue of data separation, which results in the nonexistence of the maximum likelihood estimate. Firth's modified estimator can be formulated as a penalized maximum likelihood estimator in which Jeffreys' prior is adopted as the penalty term. Despite its widespread use in practice, the formal verification of the corresponding estimate's existence has not been established. In this study, we establish the existence theorem of Firth's modified estimate in binomial logistic regression models, assuming only the full column rankness of the design matrix. We also discuss other binomial regression models obtained through alternating link functions and prove the existence of similar penalized maximum likelihood estimates for such models.

Confidence intervals based on the central limit theorem (CLT) are a cornerstone of classical statistics. Despite being only asymptotically valid, they are ubiquitous because they permit statistical inference under weak assumptions and can often be applied to problems even when nonasymptotic inference is impossible. This paper introduces time-uniform analogues of such asymptotic confidence intervals, adding to the literature on confidence sequences (CS) -- sequences of confidence intervals that are uniformly valid over time -- which provide valid inference at arbitrary stopping times and incur no penalties for "peeking" at the data, unlike classical confidence intervals which require the sample size to be fixed in advance. Existing CSs in the literature are nonasymptotic, enjoying finite-sample guarantees but not the aforementioned broad applicability of asymptotic confidence intervals. This work provides a definition for "asymptotic CSs" and a general recipe for deriving them. Asymptotic CSs forgo nonasymptotic validity for CLT-like versatility and (asymptotic) time-uniform guarantees. While the CLT approximates the distribution of a sample average by that of a Gaussian for a fixed sample size, we use strong invariance principles (stemming from the seminal 1960s work of Strassen) to uniformly approximate the entire sample average process by an implicit Gaussian process. As an illustration, we derive asymptotic CSs for the average treatment effect in observational studies (for which nonasymptotic bounds are essentially impossible to derive even in the fixed-time regime) as well as randomized experiments, enabling causal inference in sequential environments.

In logistic regression modeling, Firth's modified estimator is widely used to address the issue of data separation, which results in the nonexistence of the maximum likelihood estimate. Firth's modified estimator can be formulated as a penalized maximum likelihood estimator in which Jeffreys' prior is adopted as the penalty term. Despite its widespread use in practice, the formal verification of the corresponding estimate's existence has not been established. In this study, we establish the existence theorem of Firth's modified estimate in binomial logistic regression models, assuming only the full column rankness of the design matrix. We also discuss multinomial logistic regression models. Unlike the binomial regression case, we show through an example that the Jeffreys-prior penalty term does not necessarily diverge to negative infinity as the parameter diverges.

北京阿比特科技有限公司