亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The correct use of cryptography is central to ensuring data security in modern software systems. Hence, several academic and commercial static analysis tools have been developed for detecting and mitigating crypto-API misuse. While developers are optimistically adopting these crypto-API misuse detectors (or crypto-detectors) in their software development cycles, this momentum must be accompanied by a rigorous understanding of their effectiveness at finding crypto-API misuse in practice. This paper presents the MASC framework, which enables a systematic and data-driven evaluation of crypto-detectors using mutation testing. We ground MASC in a comprehensive view of the problem space by developing a data-driven taxonomy of existing crypto-API misuse, containing $105$ misuse cases organized among nine semantic clusters. We develop $12$ generalizable usage-based mutation operators and three mutation scopes that can expressively instantiate thousands of compilable variants of the misuse cases for thoroughly evaluating crypto-detectors. Using MASC, we evaluate nine major crypto-detectors and discover $19$ unique, undocumented flaws that severely impact the ability of crypto-detectors to discover misuses in practice. We conclude with a discussion on the diverse perspectives that influence the design of crypto-detectors and future directions towards building security-focused crypto-detectors by design.

相關內容

CASES:International Conference on Compilers, Architectures, and Synthesis for Embedded Systems。 Explanation:嵌入式(shi)系統編譯器、體系結構和綜合國際會議(yi)。 Publisher:ACM。 SIT:

This paper presents a design space exploration for SABER, one of the finalists in NIST's quantum-resistant public-key cryptographic standardization effort. Our design space exploration targets a 65nm ASIC platform and has resulted in the evaluation of 6 different architectures. Our exploration is initiated by setting a baseline architecture which is ported from FPGA. In order to improve the clock frequency (the primary goal in our exploration), we have employed several optimizations: (i) use of compiled memories in a 'smart synthesis' fashion, (ii) pipelining, and (iii) logic sharing between SABER building blocks. The most optimized architecture utilizes four register files, achieves a remarkable clock frequency of 1GHz while only requiring an area of 0.314mm2. Moreover, physical synthesis is carried out for this architecture and a tapeout-ready layout is presented. The estimated dynamic power consumption of the high-frequency architecture is approximately 184mW for key generation and 187mW for encapsulation or decapsulation operations. These results strongly suggest that our optimized accelerator architecture is well suited for high-speed cryptographic applications.

Wearable devices generate different types of physiological data about the individuals. These data can provide valuable insights for medical researchers and clinicians that cannot be availed through traditional measures. Researchers have historically relied on survey responses or observed behavior. Interestingly, physiological data can provide a richer amount of user cognition than that obtained from any other sources, including the user himself. Therefore, the inexpensive consumer-grade wearable devices have become a point of interest for the health researchers. In addition, they are also used in continuous remote health monitoring and sometimes by the insurance companies. However, the biggest concern for such kind of use cases is the privacy of the individuals. There are a few privacy mechanisms, such as abstraction and k-anonymity, are widely used in information systems. Recently, Differential Privacy (DP) has emerged as a proficient technique to publish privacy sensitive data, including data from wearable devices. In this paper, we have conducted a Systematic Literature Review (SLR) to identify, select and critically appraise researches in DP as well as to understand different techniques and exiting use of DP in wearable data publishing. Based on our study we have identified the limitations of proposed solutions and provided future directions.

Fuzzy Message Detection (FMD) is a recent cryptographic primitive invented by Beck et al. (CCS'21) where an untrusted server performs coarse message filtering for its clients in a recipient-anonymous way. In FMD - besides the true positive messages - the clients download from the server their cover messages determined by their false-positive detection rates. What is more, within FMD, the server cannot distinguish between genuine and cover traffic. In this paper, we formally analyze the privacy guarantees of FMD from four different angles. First, we evaluate what privacy provisions are offered by FMD. We found that FMD does not provide relationship anonymity without additional cryptographic techniques protecting the senders' identities. Moreover, FMD only provides a reasonable degree of recipient unlinkability when users apply considerable false-positive rates, and concurrently there is significant traffic. Second, we perform a differential privacy (DP) analysis and coin a relaxed DP definition to capture the privacy guarantees FMD yields. Third, we study FMD through a game-theoretic lens and argue why FMD is not sustainable without altruistic users. Finally, we simulate FMD on real-world communication data. Our theoretical and empirical results assist FMD users to adequately select their false-positive detection rates for various applications with given privacy requirements.

Humans have a natural instinct to identify unknown object instances in their environments. The intrinsic curiosity about these unknown instances aids in learning about them, when the corresponding knowledge is eventually available. This motivates us to propose a novel computer vision problem called: `Open World Object Detection', where a model is tasked to: 1) identify objects that have not been introduced to it as `unknown', without explicit supervision to do so, and 2) incrementally learn these identified unknown categories without forgetting previously learned classes, when the corresponding labels are progressively received. We formulate the problem, introduce a strong evaluation protocol and provide a novel solution, which we call ORE: Open World Object Detector, based on contrastive clustering and energy based unknown identification. Our experimental evaluation and ablation studies analyze the efficacy of ORE in achieving Open World objectives. As an interesting by-product, we find that identifying and characterizing unknown instances helps to reduce confusion in an incremental object detection setting, where we achieve state-of-the-art performance, with no extra methodological effort. We hope that our work will attract further research into this newly identified, yet crucial research direction.

Object detection, as of one the most fundamental and challenging problems in computer vision, has received great attention in recent years. Its development in the past two decades can be regarded as an epitome of computer vision history. If we think of today's object detection as a technical aesthetics under the power of deep learning, then turning back the clock 20 years we would witness the wisdom of cold weapon era. This paper extensively reviews 400+ papers of object detection in the light of its technical evolution, spanning over a quarter-century's time (from the 1990s to 2019). A number of topics have been covered in this paper, including the milestone detectors in history, detection datasets, metrics, fundamental building blocks of the detection system, speed up techniques, and the recent state of the art detection methods. This paper also reviews some important detection applications, such as pedestrian detection, face detection, text detection, etc, and makes an in-deep analysis of their challenges as well as technical improvements in recent years.

Being accurate, efficient, and compact is essential to a facial landmark detector for practical use. To simultaneously consider the three concerns, this paper investigates a neat model with promising detection accuracy under wild environments e.g., unconstrained pose, expression, lighting, and occlusion conditions) and super real-time speed on a mobile device. More concretely, we customize an end-to-end single stage network associated with acceleration techniques. During the training phase, for each sample, rotation information is estimated for geometrically regularizing landmark localization, which is then NOT involved in the testing phase. A novel loss is designed to, besides considering the geometrical regularization, mitigate the issue of data imbalance by adjusting weights of samples to different states, such as large pose, extreme lighting, and occlusion, in the training set. Extensive experiments are conducted to demonstrate the efficacy of our design and reveal its superior performance over state-of-the-art alternatives on widely-adopted challenging benchmarks, i.e., 300W (including iBUG, LFPW, AFW, HELEN, and XM2VTS) and AFLW. Our model can be merely 2.1Mb of size and reach over 140 fps per face on a mobile phone (Qualcomm ARM 845 processor) with high precision, making it attractive for large-scale or real-time applications. We have made our practical system based on PFLD 0.25X model publicly available at \url{//sites.google.com/view/xjguo/fld} for encouraging comparisons and improvements from the community.

It is becoming increasingly easy to automatically replace a face of one person in a video with the face of another person by using a pre-trained generative adversarial network (GAN). Recent public scandals, e.g., the faces of celebrities being swapped onto pornographic videos, call for automated ways to detect these Deepfake videos. To help developing such methods, in this paper, we present the first publicly available set of Deepfake videos generated from videos of VidTIMIT database. We used open source software based on GANs to create the Deepfakes, and we emphasize that training and blending parameters can significantly impact the quality of the resulted videos. To demonstrate this impact, we generated videos with low and high visual quality (320 videos each) using differently tuned parameter sets. We showed that the state of the art face recognition systems based on VGG and Facenet neural networks are vulnerable to Deepfake videos, with 85.62% and 95.00% false acceptance rates respectively, which means methods for detecting Deepfake videos are necessary. By considering several baseline approaches, we found that audio-visual approach based on lip-sync inconsistency detection was not able to distinguish Deepfake videos. The best performing method, which is based on visual quality metrics and is often used in presentation attack detection domain, resulted in 8.97% equal error rate on high quality Deepfakes. Our experiments demonstrate that GAN-generated Deepfake videos are challenging for both face recognition systems and existing detection methods, and the further development of face swapping technology will make it even more so.

In this paper, we propose an efficient and fast object detector which can process hundreds of frames per second. To achieve this goal we investigate three main aspects of the object detection framework: network architecture, loss function and training data (labeled and unlabeled). In order to obtain compact network architecture, we introduce various improvements, based on recent work, to develop an architecture which is computationally light-weight and achieves a reasonable performance. To further improve the performance, while keeping the complexity same, we utilize distillation loss function. Using distillation loss we transfer the knowledge of a more accurate teacher network to proposed light-weight student network. We propose various innovations to make distillation efficient for the proposed one stage detector pipeline: objectness scaled distillation loss, feature map non-maximal suppression and a single unified distillation loss function for detection. Finally, building upon the distillation loss, we explore how much can we push the performance by utilizing the unlabeled data. We train our model with unlabeled data using the soft labels of the teacher network. Our final network consists of 10x fewer parameters than the VGG based object detection network and it achieves a speed of more than 200 FPS and proposed changes improve the detection accuracy by 14 mAP over the baseline on Pascal dataset.

Recommender systems rely on large datasets of historical data and entail serious privacy risks. A server offering recommendations as a service to a client might leak more information than necessary regarding its recommendation model and training dataset. At the same time, the disclosure of the client's preferences to the server is also a matter of concern. Providing recommendations while preserving privacy in both senses is a difficult task, which often comes into conflict with the utility of the system in terms of its recommendation-accuracy and efficiency. Widely-purposed cryptographic primitives such as secure multi-party computation and homomorphic encryption offer strong security guarantees, but in conjunction with state-of-the-art recommender systems yield far-from-practical solutions. We precisely define the above notion of security and propose CryptoRec, a novel recommendations-as-a-service protocol, which encompasses a crypto-friendly recommender system. This model possesses two interesting properties: (1) It models user-item interactions in a user-free latent feature space in which it captures personalized user features by an aggregation of item features. This means that a server with a pre-trained model can provide recommendations for a client without having to re-train the model with the client's preferences. Nevertheless, re-training the model still improves accuracy. (2) It only uses addition and multiplication operations, making the model straightforwardly compatible with homomorphic encryption schemes.

Image forensics aims to detect the manipulation of digital images. Currently, splicing detection, copy-move detection and image retouching detection are drawing much attentions from researchers. However, image editing techniques develop with time goes by. One emerging image editing technique is colorization, which can colorize grayscale images with realistic colors. Unfortunately, this technique may also be intentionally applied to certain images to confound object recognition algorithms. To the best of our knowledge, no forensic technique has yet been invented to identify whether an image is colorized. We observed that, compared to natural images, colorized images, which are generated by three state-of-the-art methods, possess statistical differences for the hue and saturation channels. Besides, we also observe statistical inconsistencies in the dark and bright channels, because the colorization process will inevitably affect the dark and bright channel values. Based on our observations, i.e., potential traces in the hue, saturation, dark and bright channels, we propose two simple yet effective detection methods for fake colorized images: Histogram based Fake Colorized Image Detection (FCID-HIST) and Feature Encoding based Fake Colorized Image Detection (FCID-FE). Experimental results demonstrate that both proposed methods exhibit a decent performance against multiple state-of-the-art colorization approaches.

北京阿比特科技有限公司