亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we develop invariance-based procedures for testing and inference in high-dimensional regression models. These procedures, also known as randomization tests, provide several important advantages. First, for the global null hypothesis of significance, our test is valid in finite samples. It is also simple to implement and comes with finite-sample guarantees on statistical power. Remarkably, despite its simplicity, this testing idea has escaped the attention of earlier analytical work, which mainly concentrated on complex high-dimensional asymptotic methods. Under an additional assumption of Gaussian design, we show that this test also achieves the minimax optimal rate against certain nonsparse alternatives, a type of result that is rare in the literature. Second, for partial null hypotheses, we propose residual-based tests and derive theoretical conditions for their validity. These tests can be made powerful by constructing the test statistic in a way that, first, selects the important covariates (e.g., through Lasso) and then orthogonalizes the nuisance parameters. We illustrate our results through extensive simulations and applied examples. One consistent finding is that the strong finite-sample guarantees associated with our procedures result in added robustness when it comes to handling multicollinearity and heavy-tailed covariates.

相關內容

Identifying causal structure is central to many fields ranging from strategic decision-making to biology and economics. In this work, we propose CD-UCT, a model-based reinforcement learning method for causal discovery based on tree search that builds directed acyclic graphs incrementally. We also formalize and prove the correctness of an efficient algorithm for excluding edges that would introduce cycles, which enables deeper discrete search and sampling in DAG space. The proposed method can be applied broadly to causal Bayesian networks with both discrete and continuous random variables. We conduct a comprehensive evaluation on synthetic and real-world datasets, showing that CD-UCT substantially outperforms the state-of-the-art model-free reinforcement learning technique and greedy search, constituting a promising advancement for combinatorial methods.

In this paper, we introduce InfiAgent-DABench, the first benchmark specifically designed to evaluate LLM-based agents on data analysis tasks. These tasks require agents to end-to-end solving complex tasks by interacting with an execution environment. This benchmark contains DAEval, a dataset consisting of 257 data analysis questions derived from 52 CSV files, and an agent framework which incorporates LLMs to serve as data analysis agents for both serving and evaluation. Since data analysis questions are often open-ended and hard to evaluate without human supervision, we adopt a format-prompting technique to convert each question into a closed-form format so that they can be automatically evaluated. Our extensive benchmarking of 34 LLMs uncovers the current challenges encountered in data analysis tasks. In addition, building on top of our agent framework, we develop a specialized agent, DAAgent, which surpasses GPT-3.5 by 3.9% on DABench. Evaluation datasets and toolkits for InfiAgent-DABench are released at //github.com/InfiAgent/InfiAgent .

With the advent of machine learning, there has been renewed interest in the problem of wireless channel estimation. This paper presents a novel low-complexity wireless channel estimation scheme based on a tapped delay line (TDL) model of wireless signal propagation, where a data-driven machine learning approach is used to estimate the path delays and gains. Advantages of this approach include low computation time and training data requirements, as well as interpretability since the estimated model parameters and their variance provide comprehensive representation of the dynamic wireless multipath environment. We evaluate this model's performance using Matlab's ray-tracing tool under static and dynamic conditions for increased realism instead of the standard evaluation approaches using statistical channel models. Our results show that our TDL-based model can accurately estimate the path delays and associated gains for a broad-range of locations and operating conditions. Root-mean-square estimation error remained less than $10^{-4}$, or $-40$dB, for SNR $\geq 30$dB in all of our experiments. The key motivation for the novel channel estimation model is to gain environment awareness, i.e., detecting changes in path delays and gains related to interesting objects and events in the field. The channel state with multipath delays and gains is a detailed measure to sense the field than the single-tap channel state indicator calculated in current OFDM systems.

The advancement of Large Language Models (LLM) has also resulted in an equivalent proliferation in its applications. Software design, being one, has gained tremendous benefits in using LLMs as an interface component that extends fixed user stories. However, inclusion of LLM-based AI agents in software design often poses unexpected challenges, especially in the estimation of development efforts. Through the example of UI-based user stories, we provide a comparison against traditional methods and propose a new way to enhance specifications of natural language-based questions that allows for the estimation of development effort by taking into account data sources, interfaces and algorithms.

In multi-objective optimization, designing good benchmark problems is an important issue for improving solvers. Controlling the global location of Pareto optima in existing benchmark problems has been problematic, and it is even more difficult when the design space is high-dimensional since visualization is extremely challenging. As a benchmarking with explicit local Pareto fronts, we introduce a benchmarking based on basin connectivity (3BC) by using basins of attraction. The 3BC allows for the specification of a multimodal landscape through a kind of topological analysis called the basin graph, effectively generating optimization problems from this graph. Various known indicators measure the performance of a solver in searching global Pareto optima, but using 3BC can make us localize them for each local Pareto front by restricting it to its basin. 3BC's mathematical formulation ensures the accurate representation of the specified optimization landscape, guaranteeing the existence of intended local and global Pareto optima.

Learning time-series models is useful for many applications, such as simulation and forecasting. In this study, we consider the problem of actively learning time-series models while taking given safety constraints into account. For time-series modeling we employ a Gaussian process with a nonlinear exogenous input structure. The proposed approach generates data appropriate for time series model learning, i.e. input and output trajectories, by dynamically exploring the input space. The approach parametrizes the input trajectory as consecutive trajectory sections, which are determined stepwise given safety requirements and past observations. We analyze the proposed algorithm and evaluate it empirically on a technical application. The results show the effectiveness of our approach in a realistic technical use case.

Link prediction on knowledge graphs (KGs) is a key research topic. Previous work mainly focused on binary relations, paying less attention to higher-arity relations although they are ubiquitous in real-world KGs. This paper considers link prediction upon n-ary relational facts and proposes a graph-based approach to this task. The key to our approach is to represent the n-ary structure of a fact as a small heterogeneous graph, and model this graph with edge-biased fully-connected attention. The fully-connected attention captures universal inter-vertex interactions, while with edge-aware attentive biases to particularly encode the graph structure and its heterogeneity. In this fashion, our approach fully models global and local dependencies in each n-ary fact, and hence can more effectively capture associations therein. Extensive evaluation verifies the effectiveness and superiority of our approach. It performs substantially and consistently better than current state-of-the-art across a variety of n-ary relational benchmarks. Our code is publicly available.

In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.

BERT, a pre-trained Transformer model, has achieved ground-breaking performance on multiple NLP tasks. In this paper, we describe BERTSUM, a simple variant of BERT, for extractive summarization. Our system is the state of the art on the CNN/Dailymail dataset, outperforming the previous best-performed system by 1.65 on ROUGE-L. The codes to reproduce our results are available at //github.com/nlpyang/BertSum

In this paper, we propose a novel multi-task learning architecture, which incorporates recent advances in attention mechanisms. Our approach, the Multi-Task Attention Network (MTAN), consists of a single shared network containing a global feature pool, together with task-specific soft-attention modules, which are trainable in an end-to-end manner. These attention modules allow for learning of task-specific features from the global pool, whilst simultaneously allowing for features to be shared across different tasks. The architecture can be built upon any feed-forward neural network, is simple to implement, and is parameter efficient. Experiments on the CityScapes dataset show that our method outperforms several baselines in both single-task and multi-task learning, and is also more robust to the various weighting schemes in the multi-task loss function. We further explore the effectiveness of our method through experiments over a range of task complexities, and show how our method scales well with task complexity compared to baselines.

北京阿比特科技有限公司