亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The evaluation of recommendation systems is a complex task. The offline and online evaluation metrics for recommender systems are ambiguous in their true objectives. The majority of recently published papers benchmark their methods using ill-posed offline evaluation methodology that often fails to predict true online performance. Because of this, the impact that academic research has on the industry is reduced. The aim of our research is to investigate and compare the online performance of offline evaluation metrics. We show that penalizing popular items and considering the time of transactions during the evaluation significantly improves our ability to choose the best recommendation model for a live recommender system. Our results, averaged over five large-size real-world live data procured from recommenders, aim to help the academic community to understand better offline evaluation and optimization criteria that are more relevant for real applications of recommender systems.

相關內容

醫學(xue)(xue)人工智能AIM(Artificial Intelligence in Medicine)雜(za)志發(fa)表了(le)多學(xue)(xue)科(ke)領域(yu)的原創文(wen)章,涉及醫學(xue)(xue)中的人工智能理論和實(shi)踐,以醫學(xue)(xue)為導向的人類生(sheng)(sheng)物學(xue)(xue)和衛(wei)生(sheng)(sheng)保健(jian)。醫學(xue)(xue)中的人工智能可(ke)以被描述(shu)為與研究(jiu)、項目和應用(yong)相(xiang)關的科(ke)學(xue)(xue)學(xue)(xue)科(ke),旨在通過(guo)基于(yu)知識(shi)或(huo)數據密集(ji)型的計算機解(jie)決(jue)方案支(zhi)(zhi)持基于(yu)決(jue)策的醫療(liao)任(ren)務,最終支(zhi)(zhi)持和改善人類護理提供者的性能。 官網地址(zhi):

Data movement between memory and processors is a major bottleneck in modern computing systems. The processing-in-memory (PIM) paradigm aims to alleviate this bottleneck by performing computation inside memory chips. Real PIM hardware (e.g., the UPMEM system) is now available and has demonstrated potential in many applications. However, programming such real PIM hardware remains a challenge for many programmers. This paper presents a new software framework, SimplePIM, to aid programming real PIM systems. The framework processes arrays of arbitrary elements on a PIM device by calling iterator functions from the host and provides primitives for communication among PIM cores and between PIM and the host system. We implement SimplePIM for the UPMEM PIM system and evaluate it on six major applications. Our results show that SimplePIM enables 66.5% to 83.1% reduction in lines of code in PIM programs. The resulting code leads to higher performance (between 10% and 37% speedup) than hand-optimized code in three applications and provides comparable performance in three others. SimplePIM is fully and freely available at //github.com/CMU-SAFARI/SimplePIM.

Data assimilation addresses the problem of identifying plausible state trajectories of dynamical systems given noisy or incomplete observations. In geosciences, it presents challenges due to the high-dimensionality of geophysical dynamical systems, often exceeding millions of dimensions. This work assesses the scalability of score-based data assimilation (SDA), a novel data assimilation method, in the context of such systems. We propose modifications to the score network architecture aimed at significantly reducing memory consumption and execution time. We demonstrate promising results for a two-layer quasi-geostrophic model.

Anomaly detection is the task of identifying abnormal behavior of a system. Anomaly detection in computational workflows is of special interest because of its wide implications in various domains such as cybersecurity, finance, and social networks. However, anomaly detection in computational workflows~(often modeled as graphs) is a relatively unexplored problem and poses distinct challenges. For instance, when anomaly detection is performed on graph data, the complex interdependency of nodes and edges, the heterogeneity of node attributes, and edge types must be accounted for. Although the use of graph neural networks can help capture complex inter-dependencies, the scarcity of labeled anomalous examples from workflow executions is still a significant challenge. To address this problem, we introduce an autoencoder-driven self-supervised learning~(SSL) approach that learns a summary statistic from unlabeled workflow data and estimates the normal behavior of the computational workflow in the latent space. In this approach, we combine generative and contrastive learning objectives to detect outliers in the summary statistics. We demonstrate that by estimating the distribution of normal behavior in the latent space, we can outperform state-of-the-art anomaly detection methods on our benchmark datasets.

Simplicial complexes are a convenient semantic primitive to reason about processes (agents) communicating with each other in synchronous and asynchronous computation. Impure simplicial complexes distinguish active processes from crashed ones, in other words, agents that are alive from agents that are dead. In order to rule out that dead agents reason about themselves and about other agents, three-valued epistemic semantics have been proposed where, in addition to the usual values true and false, the third value stands for undefined: the knowledge of dead agents is undefined and so are the propositional variables describing their local state. Other semantics for impure complexes are two-valued where a dead agent knows everything. Different choices in designing a semantics produce different three-valued semantics, and also different two-valued semantics. In this work, we categorize the available choices by discounting the bad ones, identifying the equivalent ones, and connecting the non-equivalent ones via a translation. The main result of the paper is identifying the main relevant distinction to be the number of truth values and bridging this difference by means of a novel embedding from three- into two-valued semantics. This translation also enables us to highlight quite fundamental modeling differences underpinning various two- and three-valued approaches in this area of combinatorial topology. In particular, pure complexes can be defined as those invariant under the translation.

Layered architectures have been widely used in robot systems. The majority of them implement planning and execution functions in separate layers. However, there still lacks a straightforward way to transit high-level tasks in the planning layer to the low-level motor commands in the execution layer. In order to tackle this challenge, we propose a novel approach to ground the manipulator primitive tasks to robot low-level actions using large language models (LLMs). We designed a program-function-like prompt based on the task frame formalism. In this way, we enable LLMs to generate position/force set-points for hybrid control. Evaluations over several state-of-the-art LLMs are provided.

We study functional and concurrent calculi with non-determinism, along with type systems to control resources based on linearity. The interplay between non-determinism and linearity is delicate: careless handling of branches can discard resources meant to be used exactly once. Here we go beyond prior work by considering non-determinism in its standard sense: once a branch is selected, the rest are discarded. Our technical contributions are three-fold. First, we introduce a $\pi$-calculus with non-deterministic choice, governed by session types. Second, we introduce a resource $\lambda$-calculus, governed by intersection types, in which non-determinism concerns fetching of resources from bags. Finally, we connect our two typed non-deterministic calculi via a correct translation.

Uncertainties in the real world mean that is impossible for system designers to anticipate and explicitly design for all scenarios that a robot might encounter. Thus, robots designed like this are fragile and fail outside of highly-controlled environments. Causal models provide a principled framework to encode formal knowledge of the causal relationships that govern the robot's interaction with its environment, in addition to probabilistic representations of noise and uncertainty typically encountered by real-world robots. Combined with causal inference, these models permit an autonomous agent to understand, reason about, and explain its environment. In this work, we focus on the problem of a robot block-stacking task due to the fundamental perception and manipulation capabilities it demonstrates, required by many applications including warehouse logistics and domestic human support robotics. We propose a novel causal probabilistic framework to embed a physics simulation capability into a structural causal model to permit robots to perceive and assess the current state of a block-stacking task, reason about the next-best action from placement candidates, and generate post-hoc counterfactual explanations. We provide exemplar next-best action selection results and outline planned experimentation in simulated and real-world robot block-stacking tasks.

Most object recognition approaches predominantly focus on learning discriminative visual patterns while overlooking the holistic object structure. Though important, structure modeling usually requires significant manual annotations and therefore is labor-intensive. In this paper, we propose to "look into object" (explicitly yet intrinsically model the object structure) through incorporating self-supervisions into the traditional framework. We show the recognition backbone can be substantially enhanced for more robust representation learning, without any cost of extra annotation and inference speed. Specifically, we first propose an object-extent learning module for localizing the object according to the visual patterns shared among the instances in the same category. We then design a spatial context learning module for modeling the internal structures of the object, through predicting the relative positions within the extent. These two modules can be easily plugged into any backbone networks during training and detached at inference time. Extensive experiments show that our look-into-object approach (LIO) achieves large performance gain on a number of benchmarks, including generic object recognition (ImageNet) and fine-grained object recognition tasks (CUB, Cars, Aircraft). We also show that this learning paradigm is highly generalizable to other tasks such as object detection and segmentation (MS COCO). Project page: //github.com/JDAI-CV/LIO.

We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.

Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.

北京阿比特科技有限公司