亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The rise of Large Language Models (LLMs) has significantly advanced many applications on software engineering tasks, particularly in code generation. Despite the promising performance, LLMs are prone to generate hallucinations, which means LLMs might produce outputs that deviate from users' intent, exhibit internal inconsistencies, or misalign with the factual knowledge, making the deployment of LLMs potentially risky in a wide range of applications. Existing work mainly focuses on investing the hallucination in the domain of natural language generation (NLG), leaving a gap in understanding the types and extent of hallucinations in the context of code generation. To bridge the gap, we conducted a thematic analysis of the LLM-generated code to summarize and categorize the hallucinations present in it. Our study established a comprehensive taxonomy of hallucinations in LLM-generated code, encompassing 5 primary categories of hallucinations depending on the conflicting objectives and varying degrees of deviation observed in code generation. Furthermore, we systematically analyzed the distribution of hallucinations, exploring variations among different LLMs and their correlation with code correctness. Based on the results, we proposed HalluCode, a benchmark for evaluating the performance of code LLMs in recognizing hallucinations. Hallucination recognition and mitigation experiments with HalluCode and HumanEval show existing LLMs face great challenges in recognizing hallucinations, particularly in identifying their types, and are hardly able to mitigate hallucinations. We believe our findings will shed light on future research about hallucination evaluation, detection, and mitigation, ultimately paving the way for building more effective and reliable code LLMs in the future.

相關內容

代碼(Code)是專知網的一個重要知識資料文檔板塊,旨在整理收錄論文源代碼、復現代碼,經典工程代碼等,便于用戶查閱下載使用。

Computational offload to hardware accelerators is gaining traction due to increasing computational demands and efficiency challenges. Programmable hardware, like FPGAs, offers a promising platform in rapidly evolving application areas, with the benefits of hardware acceleration and software programmability. Unfortunately, such systems composed of multiple hardware components must consider integrity in the case of malicious components. In this work, we propose Samsara, the first secure and resilient platform that derives, from Byzantine Fault Tolerant (BFT), protocols to enhance the computing resilience of programmable hardware. Samsara uses a novel lightweight hardware-based BFT protocol for Systems-on-Chip, called H-Quorum, that implements the theoretical-minimum latency between applications and replicated compute nodes. To withstand malicious behaviors, Samsara supports hardware rejuvenation, which is used to replace, relocate, or diversify faulty compute nodes. Samsara's architecture ensures the security of the entire workflow while keeping the latency overhead, of both computation and rejuvenation, close to the non-replicated counterpart.

Background: The development of AI-enabled software heavily depends on AI model documentation, such as model cards, due to different domain expertise between software engineers and model developers. From an ethical standpoint, AI model documentation conveys critical information on ethical considerations along with mitigation strategies for downstream developers to ensure the delivery of ethically compliant software. However, knowledge on such documentation practice remains scarce. Aims: The objective of our study is to investigate how developers document ethical aspects of open source AI models in practice, aiming at providing recommendations for future documentation endeavours. Method: We selected three sources of documentation on GitHub and Hugging Face, and developed a keyword set to identify ethics-related documents systematically. After filtering an initial set of 2,347 documents, we identified 265 relevant ones and performed thematic analysis to derive the themes of ethical considerations. Results: Six themes emerge, with the three largest ones being model behavioural risks, model use cases, and model risk mitigation. Conclusions: Our findings reveal that open source AI model documentation focuses on articulating ethical problem statements and use case restrictions. We further provide suggestions to various stakeholders for improving documentation practice regarding ethical considerations.

AI assistance tools such as ChatGPT, Copilot, and Gemini have dramatically impacted the nature of software development in recent years. Numerous studies have studied the positive benefits that practitioners have achieved from using these tools in their work. While there is a growing body of knowledge regarding the usability aspects of leveraging AI tools, we still lack concrete details on the issues that organizations and practitioners need to consider should they want to explore increasing adoption or use of AI tools. In this study, we conducted a mixed methods study involving interviews with 26 industry practitioners and 395 survey respondents. We found that there are several motives and challenges that impact individuals and organizations and developed a theory of AI Tool Adoption. For example, we found creating a culture of sharing of AI best practices and tips as a key motive for practitioners' adopting and using AI tools. In total, we identified 2 individual motives, 4 individual challenges, 3 organizational motives, and 3 organizational challenges, and 3 interleaved relationships. The 3 interleaved relationships act in a push-pull manner where motives pull practitioners to increase the use of AI tools and challenges push practitioners away from using AI tools.

As Graph Neural Networks (GNNs) become more pervasive, it becomes paramount to build robust tools for computing explanations of their predictions. A key desideratum is that these explanations are faithful, i.e., that they portray an accurate picture of the GNN's reasoning process. A number of different faithfulness metrics exist, begging the question of what faithfulness is exactly, and what its properties are. We begin by showing that existing metrics are not interchangeable -- i.e., explanations attaining high faithfulness according to one metric may be unfaithful according to others -- and can be systematically insensitive to important properties of the explanation, and suggest how to address these issues. We proceed to show that, surprisingly, optimizing for faithfulness is not always a sensible design goal. Specifically, we show that for injective regular GNN architectures, perfectly faithful explanations are completely uninformative. The situation is different for modular GNNs, such as self-explainable and domain-invariant architectures, where optimizing faithfulness does not compromise informativeness, and is also unexpectedly tied to out-of-distribution generalization.

Reinforcement Learning (RL) serves as a versatile framework for sequential decision-making, finding applications across diverse domains such as robotics, autonomous driving, recommendation systems, supply chain optimization, biology, mechanics, and finance. The primary objective in these applications is to maximize the average reward. Real-world scenarios often necessitate adherence to specific constraints during the learning process. This monograph focuses on the exploration of various model-based and model-free approaches for Constrained RL within the context of average reward Markov Decision Processes (MDPs). The investigation commences with an examination of model-based strategies, delving into two foundational methods - optimism in the face of uncertainty and posterior sampling. Subsequently, the discussion transitions to parametrized model-free approaches, where the primal-dual policy gradient-based algorithm is explored as a solution for constrained MDPs. The monograph provides regret guarantees and analyzes constraint violation for each of the discussed setups. For the above exploration, we assume the underlying MDP to be ergodic. Further, this monograph extends its discussion to encompass results tailored for weakly communicating MDPs, thereby broadening the scope of its findings and their relevance to a wider range of practical scenarios.

Histopathological analysis of Whole Slide Images (WSIs) has seen a surge in the utilization of deep learning methods, particularly Convolutional Neural Networks (CNNs). However, CNNs often fall short in capturing the intricate spatial dependencies inherent in WSIs. Graph Neural Networks (GNNs) present a promising alternative, adept at directly modeling pairwise interactions and effectively discerning the topological tissue and cellular structures within WSIs. Recognizing the pressing need for deep learning techniques that harness the topological structure of WSIs, the application of GNNs in histopathology has experienced rapid growth. In this comprehensive review, we survey GNNs in histopathology, discuss their applications, and explore emerging trends that pave the way for future advancements in the field. We begin by elucidating the fundamentals of GNNs and their potential applications in histopathology. Leveraging quantitative literature analysis, we identify four emerging trends: Hierarchical GNNs, Adaptive Graph Structure Learning, Multimodal GNNs, and Higher-order GNNs. Through an in-depth exploration of these trends, we offer insights into the evolving landscape of GNNs in histopathological analysis. Based on our findings, we propose future directions to propel the field forward. Our analysis serves to guide researchers and practitioners towards innovative approaches and methodologies, fostering advancements in histopathological analysis through the lens of graph neural networks.

Representation learning on text-attributed graphs (TAGs) is vital for real-world applications, as they combine semantic textual and contextual structural information. Research in this field generally consist of two main perspectives: local-level encoding and global-level aggregating, respectively refer to textual node information unification (e.g., using Language Models) and structure-augmented modeling (e.g., using Graph Neural Networks). Most existing works focus on combining different information levels but overlook the interconnections, i.e., the contextual textual information among nodes, which provides semantic insights to bridge local and global levels. In this paper, we propose GraphBridge, a multi-granularity integration framework that bridges local and global perspectives by leveraging contextual textual information, enhancing fine-grained understanding of TAGs. Besides, to tackle scalability and efficiency challenges, we introduce a graphaware token reduction module. Extensive experiments across various models and datasets show that our method achieves state-of-theart performance, while our graph-aware token reduction module significantly enhances efficiency and solves scalability issues.

The widely adopted Business Process Model and Notation (BPMN) is a cornerstone of industry standards for business process modeling. However, its ambiguous execution semantics often result in inconsistent interpretations, depending on the software used for implementation. In response, the Process Specification Language (PASS) provides formally defined semantics to overcome these interpretational challenges. Despite its clear advantages, PASS has not reached the same level of industry penetration as BPMN. This feasibility study proposes using PASS as an intermediary framework to translate and execute BPMN models. It describes the development of a prototype translator that converts specific BPMN elements into a format compatible with PASS. These models are then transformed into source code and executed in a bespoke workflow environment, marking a departure from traditional BPMN implementations. Our findings suggest that integrating PASS enhances compatibility across different modeling and execution tools and offers a more robust methodology for implementing business processes across organizations. This study lays the groundwork for more accurate and unified business process model executions, potentially transforming industry standards for process modeling and execution.

Recent advances in large language models (LLMs) for code applications have demonstrated remarkable zero-shot fluency and instruction following on challenging code related tasks ranging from test case generation to self-repair. Unsurprisingly, however, models struggle to compose syntactically valid programs in programming languages unrepresented in pre-training, referred to as very low-resource Programming Languages (VLPLs). VLPLs appear in crucial settings, including domain-specific languages for internal tools and tool-chains for legacy languages. Inspired by an HCI technique called natural program elicitation, we propose designing an intermediate language that LLMs ``naturally'' know how to use and which can be automatically compiled to a target VLPL. When LLMs generate code that lies outside of this intermediate language, we use compiler techniques to repair the code into programs in the intermediate language. Overall, we introduce \emph{synthetic programming elicitation and compilation} (SPEAC), an approach that enables LLMs to generate syntactically valid code even for VLPLs. We empirically evaluate the performance of SPEAC in a case study and find that, compared to existing retrieval and fine-tuning baselines, SPEAC produces syntactically correct programs significantly more frequently without sacrificing semantic correctness.

Graph Neural Networks (GNN) has demonstrated the superior performance in many challenging applications, including the few-shot learning tasks. Despite its powerful capacity to learn and generalize from few samples, GNN usually suffers from severe over-fitting and over-smoothing as the model becomes deep, which limit the model scalability. In this work, we propose a novel Attentive GNN to tackle these challenges, by incorporating a triple-attention mechanism, \ie node self-attention, neighborhood attention, and layer memory attention. We explain why the proposed attentive modules can improve GNN for few-shot learning with theoretical analysis and illustrations. Extensive experiments show that the proposed Attentive GNN outperforms the state-of-the-art GNN-based methods for few-shot learning over the mini-ImageNet and Tiered-ImageNet datasets, with both inductive and transductive settings.

北京阿比特科技有限公司