亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper studies the use of Metropolis-Hastings sampling for training Spiking Neural Network (SNN) hardware subject to strong unknown non-idealities, and compares the proposed approach to the common use of the backpropagation of error (backprop) algorithm and surrogate gradients, widely used to train SNNs in literature. Simulations are conducted within a chip-in-the-loop training context, where an SNN subject to unknown distortion must be trained to detect cancer from measurements, within a biomedical application context. Our results show that the proposed approach strongly outperforms the use of backprop by up to $27\%$ higher accuracy when subject to strong hardware non-idealities. Furthermore, our results also show that the proposed approach outperforms backprop in terms of SNN generalization, needing $>10 \times$ less training data for achieving effective accuracy. These findings make the proposed training approach well-suited for SNN implementations in analog subthreshold circuits and other emerging technologies where unknown hardware non-idealities can jeopardize backprop.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際(ji)網絡會議。 Publisher:IFIP。 SIT:

This paper presents a formation control approach for contactless gesture-based Human-Swarm Interaction (HSI) between a team of multi-rotor Unmanned Aerial Vehicles (UAVs) and a human worker. The approach is intended for monitoring the safety of human workers, especially those working at heights. In the proposed dynamic formation scheme, one UAV acts as the leader of the formation and is equipped with sensors for human worker detection and gesture recognition. The follower UAVs maintain a predetermined formation relative to the worker's position, thereby providing additional perspectives of the monitored scene. Hand gestures allow the human worker to specify movements and action commands for the UAV team and initiate other mission-related commands without the need for an additional communication channel or specific markers. Together with a novel unified human detection and tracking algorithm, human pose estimation approach and gesture detection pipeline, the proposed approach forms a first instance of an HSI system incorporating all these modules onboard real-world UAVs. Simulations and field experiments with three UAVs and a human worker in a mock-up scenario showcase the effectiveness and responsiveness of the proposed approach.

Uncertainty is critical to reliable decision-making with machine learning. Conformal prediction (CP) handles uncertainty by predicting a set on a test input, hoping the set to cover the true label with at least $(1-\alpha)$ confidence. This coverage can be guaranteed on test data even if the marginal distributions $P_X$ differ between calibration and test datasets. However, as it is common in practice, when the conditional distribution $P_{Y|X}$ is different on calibration and test data, the coverage is not guaranteed and it is essential to measure and minimize the coverage loss under distributional shift at \textit{all} possible confidence levels. To address these issues, we upper bound the coverage difference at all levels using the cumulative density functions of calibration and test conformal scores and Wasserstein distance. Inspired by the invariance of physics across data distributions, we propose a physics-informed structural causal model (PI-SCM) to reduce the upper bound. We validated that PI-SCM can improve coverage robustness along confidence level and test domain on a traffic speed prediction task and an epidemic spread task with multiple real-world datasets.

The 3D Gaussian splatting method has drawn a lot of attention, thanks to its high performance in training and high quality of the rendered image. However, it uses anisotropic Gaussian kernels to represent the scene. Although such anisotropic kernels have advantages in representing the geometry, they lead to difficulties in terms of computation, such as splitting or merging two kernels. In this paper, we propose to use isotropic Gaussian kernels to avoid such difficulties in the computation, leading to a higher performance method. The experiments confirm that the proposed method is about {\bf 100X} faster without losing the geometry representation accuracy. The proposed method can be applied in a large range applications where the radiance field is needed, such as 3D reconstruction, view synthesis, and dynamic object modeling.

This paper introduces the Passive Transformable Omni-Ball (PTOB), an advanced omnidirectional wheel engineered to enhance step-climbing performance, incorporate built-in actuators, diminish vibrations, and fortify structural integrity. By modifying the omni-ball's structure from two to three segments, we have achieved improved in-wheel actuation and a reduction in vibrational feedback. Additionally, we have implemented a sliding mechanism in the follower wheels to boost the wheel's step-climbing abilities. A prototype with a 127 mm diameter PTOB was constructed, which confirmed its functionality for omnidirectional movement and internal actuation. Compared to a traditional omni-wheel, the PTOB demonstrated a comparable level of vibration while offering superior capabilities. Extensive testing in varied settings showed that the PTOB can adeptly handle step obstacles up to 45 mm, equivalent to 35 $\%$ of the wheel's diameter, in both the forward and lateral directions. The PTOB showcased robust construction and proved to be versatile in navigating through environments with diverse obstacles.

We present the HPLT (High Performance Language Technologies) language resources, a new massive multilingual dataset including both monolingual and bilingual corpora extracted from CommonCrawl and previously unused web crawls from the Internet Archive. We describe our methods for data acquisition, management and processing of large corpora, which rely on open-source software tools and high-performance computing. Our monolingual collection focuses on low- to medium-resourced languages and covers 75 languages and a total of ~5.6 trillion word tokens de-duplicated on the document level. Our English-centric parallel corpus is derived from its monolingual counterpart and covers 18 language pairs and more than 96 million aligned sentence pairs with roughly 1.4 billion English tokens. The HPLT language resources are one of the largest open text corpora ever released, providing a great resource for language modeling and machine translation training. We publicly release the corpora, the software, and the tools used in this work.

Deep neural networks for learning Symmetric Positive Definite (SPD) matrices are gaining increasing attention in machine learning. Despite the significant progress, most existing SPD networks use traditional Euclidean classifiers on an approximated space rather than intrinsic classifiers that accurately capture the geometry of SPD manifolds. Inspired by Hyperbolic Neural Networks (HNNs), we propose Riemannian Multinomial Logistics Regression (RMLR) for the classification layers in SPD networks. We introduce a unified framework for building Riemannian classifiers under the metrics pulled back from the Euclidean space, and showcase our framework under the parameterized Log-Euclidean Metric (LEM) and Log-Cholesky Metric (LCM). Besides, our framework offers a novel intrinsic explanation for the most popular LogEig classifier in existing SPD networks. The effectiveness of our method is demonstrated in three applications: radar recognition, human action recognition, and electroencephalography (EEG) classification. The code is available at //github.com/GitZH-Chen/SPDMLR.git.

In addressing the challenge of analysing the large-scale Adolescent Brain Cognition Development (ABCD) fMRI dataset, involving over 5,000 subjects and extensive neuroimaging data, we propose a scalable Bayesian scalar-on-image regression model for computational feasibility and efficiency. Our model employs a relaxed-thresholded Gaussian process (RTGP), integrating piecewise-smooth, sparse, and continuous functions capable of both hard- and soft-thresholding. This approach introduces additional flexibility in feature selection in scalar-on-image regression and leads to scalable posterior computation by adopting a variational approximation and utilising the Karhunen-Lo\`eve expansion for Gaussian processes. This advancement substantially reduces the computational costs in vertex-wise analysis of cortical surface data in large-scale Bayesian spatial models. The model's parameter estimation and prediction accuracy and feature selection performance are validated through extensive simulation studies and an application to the ABCD study. Here, we perform regression analysis correlating intelligence scores with task-based functional MRI data, taking into account confounding factors including age, sex, and parental education level. This validation highlights our model's capability to handle large-scale neuroimaging data while maintaining computational feasibility and accuracy.

This paper deals with federated learning (FL) in the presence of malicious Byzantine attacks and data heterogeneity. A novel Robust Average Gradient Algorithm (RAGA) is proposed, which leverages the geometric median for aggregation and can freely select the round number for local updating. Different from most existing resilient approaches, which perform convergence analysis based on strongly-convex loss function or homogeneously distributed dataset, we conduct convergence analysis for not only strongly-convex but also non-convex loss function over heterogeneous dataset. According to our theoretical analysis, as long as the fraction of dataset from malicious users is less than half, RAGA can achieve convergence at rate $\mathcal{O}({1}/{T^{2/3- \delta}})$ where $T$ is the iteration number and $\delta \in (0, 2/3)$ for non-convex loss function, and at linear rate for strongly-convex loss function. Moreover, stationary point or global optimal solution is proved to obtainable as data heterogeneity vanishes. Experimental results corroborate the robustness of RAGA to Byzantine attacks and verifies the advantage of RAGA over baselines on convergence performance under various intensity of Byzantine attacks, for heterogeneous dataset.

In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.

This paper presents a new multi-objective deep reinforcement learning (MODRL) framework based on deep Q-networks. We propose the use of linear and non-linear methods to develop the MODRL framework that includes both single-policy and multi-policy strategies. The experimental results on two benchmark problems including the two-objective deep sea treasure environment and the three-objective mountain car problem indicate that the proposed framework is able to converge to the optimal Pareto solutions effectively. The proposed framework is generic, which allows implementation of different deep reinforcement learning algorithms in different complex environments. This therefore overcomes many difficulties involved with standard multi-objective reinforcement learning (MORL) methods existing in the current literature. The framework creates a platform as a testbed environment to develop methods for solving various problems associated with the current MORL. Details of the framework implementation can be referred to //www.deakin.edu.au/~thanhthi/drl.htm.

北京阿比特科技有限公司