亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Prediction-oriented machine learning is becoming increasingly valuable to organizations, as it may drive applications in crucial business areas. However, decision-makers from companies across various industries are still largely reluctant to employ applications based on modern machine learning algorithms. We ascribe this issue to the widely held view on advanced machine learning algorithms as "black boxes" whose complexity does not allow for uncovering the factors that drive the output of a corresponding system. To contribute to overcome this adoption barrier, we argue that research in information systems should devote more attention to the design of prototypical prediction-oriented machine learning applications (i.e., artifacts) whose predictions can be explained to human decision-makers. However, despite the recent emergence of a variety of tools that facilitate the development of such artifacts, there has so far been little research on their development. We attribute this research gap to the lack of methodological guidance to support the creation of these artifacts. For this reason, we develop a methodology which unifies methodological knowledge from design science research and predictive analytics with state-of-the-art approaches to explainable artificial intelligence. Moreover, we showcase the methodology using the example of price prediction in the sharing economy (i.e., on Airbnb).

相關內容

機器學(xue)(xue)習(xi)(xi)(Machine Learning)是一個(ge)研(yan)(yan)究(jiu)計算學(xue)(xue)習(xi)(xi)方(fang)法(fa)(fa)的(de)(de)國(guo)際(ji)論壇。該(gai)雜志(zhi)發表文(wen)章(zhang),報告廣泛(fan)的(de)(de)學(xue)(xue)習(xi)(xi)方(fang)法(fa)(fa)應用(yong)(yong)于各種學(xue)(xue)習(xi)(xi)問題的(de)(de)實(shi)質性(xing)結果。該(gai)雜志(zhi)的(de)(de)特色(se)論文(wen)描述研(yan)(yan)究(jiu)的(de)(de)問題和(he)方(fang)法(fa)(fa),應用(yong)(yong)研(yan)(yan)究(jiu)和(he)研(yan)(yan)究(jiu)方(fang)法(fa)(fa)的(de)(de)問題。有關學(xue)(xue)習(xi)(xi)問題或方(fang)法(fa)(fa)的(de)(de)論文(wen)通(tong)過實(shi)證(zheng)(zheng)研(yan)(yan)究(jiu)、理論分析或與心(xin)理現象的(de)(de)比較提供了(le)堅實(shi)的(de)(de)支持。應用(yong)(yong)論文(wen)展(zhan)示了(le)如何(he)應用(yong)(yong)學(xue)(xue)習(xi)(xi)方(fang)法(fa)(fa)來解決重要(yao)的(de)(de)應用(yong)(yong)問題。研(yan)(yan)究(jiu)方(fang)法(fa)(fa)論文(wen)改進了(le)機器學(xue)(xue)習(xi)(xi)的(de)(de)研(yan)(yan)究(jiu)方(fang)法(fa)(fa)。所有的(de)(de)論文(wen)都以其他研(yan)(yan)究(jiu)人員可以驗證(zheng)(zheng)或復(fu)制的(de)(de)方(fang)式(shi)描述了(le)支持證(zheng)(zheng)據。論文(wen)還(huan)詳細說(shuo)明了(le)學(xue)(xue)習(xi)(xi)的(de)(de)組(zu)成(cheng)部分,并討論了(le)關于知識(shi)表示和(he)性(xing)能任務(wu)的(de)(de)假設。 官網地址:

When labeled data is insufficient, semi-supervised learning with the pseudo-labeling technique can significantly improve the performance of automatic speech recognition. However, pseudo-labels are often noisy, containing numerous incorrect tokens. Taking noisy labels as ground-truth in the loss function results in suboptimal performance. Previous works attempted to mitigate this issue by either filtering out the nosiest pseudo-labels or improving the overall quality of pseudo-labels. While these methods are effective to some extent, it is unrealistic to entirely eliminate incorrect tokens in pseudo-labels. In this work, we propose a novel framework named alternative pseudo-labeling to tackle the issue of noisy pseudo-labels from the perspective of the training objective. The framework comprises several components. Firstly, a generalized CTC loss function is introduced to handle noisy pseudo-labels by accepting alternative tokens in the positions of incorrect tokens. Applying this loss function in pseudo-labeling requires detecting incorrect tokens in the predicted pseudo-labels. In this work, we adopt a confidence-based error detection method that identifies the incorrect tokens by comparing their confidence scores with a given threshold, thus necessitating the confidence score to be discriminative. Hence, the second proposed technique is the contrastive CTC loss function that widens the confidence gap between the correctly and incorrectly predicted tokens, thereby improving the error detection ability. Additionally, obtaining satisfactory performance with confidence-based error detection typically requires extensive threshold tuning. Instead, we propose an automatic thresholding method that uses labeled data as a proxy for determining the threshold, thus saving the pain of manual tuning.

Deep learning is increasingly being used to perform machine vision tasks such as classification, object detection, and segmentation on 3D point cloud data. However, deep learning inference is computationally expensive. The limited computational capabilities of end devices thus necessitate a codec for transmitting point cloud data over the network for server-side processing. Such a codec must be lightweight and capable of achieving high compression ratios without sacrificing accuracy. Motivated by this, we present a novel point cloud codec that is highly specialized for the machine task of classification. Our codec, based on PointNet, achieves a significantly better rate-accuracy trade-off in comparison to alternative methods. In particular, it achieves a 94% reduction in BD-bitrate over non-specialized codecs on the ModelNet40 dataset. For low-resource end devices, we also propose two lightweight configurations of our encoder that achieve similar BD-bitrate reductions of 93% and 92% with 3% and 5% drops in top-1 accuracy, while consuming only 0.470 and 0.048 encoder-side kMACs/point, respectively. Our codec demonstrates the potential of specialized codecs for machine analysis of point clouds, and provides a basis for extension to more complex tasks and datasets in the future.

The ability to interpret machine learning models has become increasingly important as their usage in data science continues to rise. Most current interpretability methods are optimized to work on either (\textit{i}) a global scale, where the goal is to rank features based on their contributions to overall variation in an observed population, or (\textit{ii}) the local level, which aims to detail on how important a feature is to a particular individual in the data set. In this work, a new operator is proposed called the "GlObal And Local Score" (GOALS): a simple \textit{post hoc} approach to simultaneously assess local and global feature variable importance in nonlinear models. Motivated by problems in biomedicine, the approach is demonstrated using Gaussian process regression where the task of understanding how genetic markers are associated with disease progression both within individuals and across populations is of high interest. Detailed simulations and real data analyses illustrate the flexible and efficient utility of GOALS over state-of-the-art variable importance strategies.

Causal Machine Learning (CausalML) is an umbrella term for machine learning methods that formalize the data-generation process as a structural causal model (SCM). This allows one to reason about the effects of changes to this process (i.e., interventions) and what would have happened in hindsight (i.e., counterfactuals). We categorize work in \causalml into five groups according to the problems they tackle: (1) causal supervised learning, (2) causal generative modeling, (3) causal explanations, (4) causal fairness, (5) causal reinforcement learning. For each category, we systematically compare its methods and point out open problems. Further, we review modality-specific applications in computer vision, natural language processing, and graph representation learning. Finally, we provide an overview of causal benchmarks and a critical discussion of the state of this nascent field, including recommendations for future work.

Federated learning (FL) has been developed as a promising framework to leverage the resources of edge devices, enhance customers' privacy, comply with regulations, and reduce development costs. Although many methods and applications have been developed for FL, several critical challenges for practical FL systems remain unaddressed. This paper provides an outlook on FL development, categorized into five emerging directions of FL, namely algorithm foundation, personalization, hardware and security constraints, lifelong learning, and nonstandard data. Our unique perspectives are backed by practical observations from large-scale federated systems for edge devices.

Graph machine learning has been extensively studied in both academic and industry. However, as the literature on graph learning booms with a vast number of emerging methods and techniques, it becomes increasingly difficult to manually design the optimal machine learning algorithm for different graph-related tasks. To tackle the challenge, automated graph machine learning, which aims at discovering the best hyper-parameter and neural architecture configuration for different graph tasks/data without manual design, is gaining an increasing number of attentions from the research community. In this paper, we extensively discuss automated graph machine approaches, covering hyper-parameter optimization (HPO) and neural architecture search (NAS) for graph machine learning. We briefly overview existing libraries designed for either graph machine learning or automated machine learning respectively, and further in depth introduce AutoGL, our dedicated and the world's first open-source library for automated graph machine learning. Last but not least, we share our insights on future research directions for automated graph machine learning. This paper is the first systematic and comprehensive discussion of approaches, libraries as well as directions for automated graph machine learning.

Exploration-exploitation is a powerful and practical tool in multi-agent learning (MAL), however, its effects are far from understood. To make progress in this direction, we study a smooth analogue of Q-learning. We start by showing that our learning model has strong theoretical justification as an optimal model for studying exploration-exploitation. Specifically, we prove that smooth Q-learning has bounded regret in arbitrary games for a cost model that explicitly captures the balance between game and exploration costs and that it always converges to the set of quantal-response equilibria (QRE), the standard solution concept for games under bounded rationality, in weighted potential games with heterogeneous learning agents. In our main task, we then turn to measure the effect of exploration in collective system performance. We characterize the geometry of the QRE surface in low-dimensional MAL systems and link our findings with catastrophe (bifurcation) theory. In particular, as the exploration hyperparameter evolves over-time, the system undergoes phase transitions where the number and stability of equilibria can change radically given an infinitesimal change to the exploration parameter. Based on this, we provide a formal theoretical treatment of how tuning the exploration parameter can provably lead to equilibrium selection with both positive as well as negative (and potentially unbounded) effects to system performance.

With the rise and development of deep learning, computer vision has been tremendously transformed and reshaped. As an important research area in computer vision, scene text detection and recognition has been inescapably influenced by this wave of revolution, consequentially entering the era of deep learning. In recent years, the community has witnessed substantial advancements in mindset, approach and performance. This survey is aimed at summarizing and analyzing the major changes and significant progresses of scene text detection and recognition in the deep learning era. Through this article, we devote to: (1) introduce new insights and ideas; (2) highlight recent techniques and benchmarks; (3) look ahead into future trends. Specifically, we will emphasize the dramatic differences brought by deep learning and the grand challenges still remained. We expect that this review paper would serve as a reference book for researchers in this field. Related resources are also collected and compiled in our Github repository: //github.com/Jyouhou/SceneTextPapers.

This paper surveys the machine learning literature and presents machine learning as optimization models. Such models can benefit from the advancement of numerical optimization techniques which have already played a distinctive role in several machine learning settings. Particularly, mathematical optimization models are presented for commonly used machine learning approaches for regression, classification, clustering, and deep neural networks as well new emerging applications in machine teaching and empirical model learning. The strengths and the shortcomings of these models are discussed and potential research directions are highlighted.

Deep learning has emerged as a powerful machine learning technique that learns multiple layers of representations or features of the data and produces state-of-the-art prediction results. Along with the success of deep learning in many other application domains, deep learning is also popularly used in sentiment analysis in recent years. This paper first gives an overview of deep learning and then provides a comprehensive survey of its current applications in sentiment analysis.

北京阿比特科技有限公司