Autonomous vehicles (AVs) often depend on multiple sensors and sensing modalities to impart a measure of robustness when operating in adverse conditions. Radars and cameras are popular choices for use in combination; although radar measurements are sparse in comparison to camera images, radar scans are able to penetrate fog, rain, and snow. Data from both sensors are typically fused prior to use in downstream perception tasks. However, accurate sensor fusion depends upon knowledge of the spatial transform between the sensors and any temporal misalignment that exists in their measurement times. During the life cycle of an AV, these calibration parameters may change, so the ability to perform in-situ spatiotemporal calibration is essential to ensure reliable long-term operation. State-of-the-art 3D radar-camera spatiotemporal calibration algorithms require bespoke calibration targets that are not readily available in the field. In this paper, we describe an algorithm for \emph{targetless} spatiotemporal calibration that is able to operate without specialized infrastructure. Our approach leverages the ability of the radar unit to measure its own ego-velocity relative to a fixed, external reference frame. We analyze the identifiability of the spatiotemporal calibration problem and determine the motions necessary for calibration. Through a series of simulation studies, we characterize the sensitivity of our algorithm to measurement noise. Finally, we demonstrate accurate calibration for three real-world systems, including a handheld sensor rig and a vehicle-mounted sensor array. Our results show that we are able to match the performance of an existing, target-based method, while calibrating in arbitrary, infrastructure-free environments.
Unmanned aerial vehicles (UAVs) are recognized as promising technologies for area coverage due to the flexibility and adaptability. However, the ability of a single UAV is limited, and as for the large-scale three-dimensional (3D) scenario, UAV swarms can establish seamless wireless communication services. Hence, in this work, we consider a scenario of UAV swarm deployment and trajectory to satisfy 3D coverage considering the effects of obstacles. In detail, we propose a hierarchical swarm framework to efficiently serve the large-area users. Then, the problem is formulated to minimize the total trajectory loss of the UAV swarm. However, the problem is intractable due to the non-convex property, and we decompose it into smaller issues of users clustering, UAV swarm hovering points selection, and swarm trajectory determination. Moreover, we design a Q-learning based algorithm to accelerate the solution efficiency. Finally, we conduct extensive simulations to verify the proposed mechanisms, and the designed algorithm outperforms other referred methods.
We present a new method for two-material Lagrangian hydrodynamics, which combines the Shifted Interface Method (SIM) with a high-order Finite Element Method. Our approach relies on an exact (or sharp) material interface representation, that is, it uses the precise location of the material interface. The interface is represented by the zero level-set of a continuous high-order finite element function that moves with the material velocity. This strategy allows to evolve curved material interfaces inside curved elements. By reformulating the original interface problem over a surrogate (approximate) interface, located in proximity of the true interface, the SIM avoids cut cells and the associated problematic issues regarding implementation, numerical stability, and matrix conditioning. Accuracy is maintained by modifying the original interface conditions using Taylor expansions. We demonstrate the performance of the proposed algorithms on established numerical benchmarks in one, two and three dimensions.
Information compression techniques are majorly employed to address the concern of reducing communication cost over peer-to-peer links. In this paper, we investigate distributed Nash equilibrium (NE) seeking problems in a class of non-cooperative games over directed graphs with information compression. To improve communication efficiency, a compressed distributed NE seeking (C-DNES) algorithm is proposed to obtain a NE for games, where the differences between decision vectors and their estimates are compressed. The proposed algorithm is compatible with a general class of compression operators, including both unbiased and biased compressors. Moreover, our approach only requires the adjacency matrix of the directed graph to be row-stochastic, in contrast to past works that relied on balancedness or specific global network parameters. It is shown that C-DNES not only inherits the advantages of conventional distributed NE algorithms, achieving linear convergence rate for games with restricted strongly monotone mappings, but also saves communication costs in terms of transmitted bits. Finally, numerical simulations illustrate the advantages of C-DNES in saving communication cost by an order of magnitude under different compressors.
Explainable recommender systems (RS) have traditionally followed a one-size-fits-all approach, delivering the same explanation level of detail to each user, without considering their individual needs and goals. Further, explanations in RS have so far been presented mostly in a static and non-interactive manner. To fill these research gaps, we aim in this paper to adopt a user-centered, interactive explanation model that provides explanations with different levels of detail and empowers users to interact with, control, and personalize the explanations based on their needs and preferences. We followed a user-centered approach to design interactive explanations with three levels of detail (basic, intermediate, and advanced) and implemented them in the transparent Recommendation and Interest Modeling Application (RIMA). We conducted a qualitative user study (N=14) to investigate the impact of providing interactive explanations with varying level of details on the users' perception of the explainable RS. Our study showed qualitative evidence that fostering interaction and giving users control in deciding which explanation they would like to see can meet the demands of users with different needs, preferences, and goals, and consequently can have positive effects on different crucial aspects in explainable recommendation, including transparency, trust, satisfaction, and user experience.
Following complex instructions in conversational assistants can be quite daunting due to the shorter attention and memory spans when compared to reading the same instructions. Hence, when conversational assistants walk users through the steps of complex tasks, there is a need to structure the task into manageable pieces of information of the right length and complexity. In this paper, we tackle the recipes domain and convert reading structured instructions into conversational structured ones. We annotated the structure of instructions according to a conversational scenario, which provided insights into what is expected in this setting. To computationally model the conversational step's characteristics, we tested various Transformer-based architectures, showing that a token-based approach delivers the best results. A further user study showed that users tend to favor steps of manageable complexity and length, and that the proposed methodology can improve the original web-based instructional text. Specifically, 86% of the evaluated tasks were improved from a conversational suitability point of view.
We propose and analyze the application of statistical functional depth metrics for the selection of extreme scenarios in day-ahead grid planning. Our primary motivation is screening of probabilistic scenarios for realized load and renewable generation, in order to identify scenarios most relevant for operational risk mitigation. To handle the high-dimensionality of the scenarios across asset classes and intra-day periods, we employ functional measures of depth to sub-select outlying scenarios that are most likely to be the riskiest for the grid operation. We investigate a range of functional depth measures, as well as a range of operational risks, including load shedding, operational costs, reserves shortfall and variable renewable energy curtailment. The effectiveness of the proposed screening approach is demonstrated through a case study on the realistic Texas-7k grid.
Ordered sequences of data, specified with a join operation to combine sequences, serve as a foundation for the implementation of parallel functional algorithms. This abstract data type can be elegantly and efficiently implemented using balanced binary trees, where a join operation is provided to combine two trees and rebalance as necessary. In this work, we present a verified implementation and cost analysis of joinable red-black trees in $\textbf{calf}$, a dependent type theory for cost analysis. We implement red-black trees and auxiliary intermediate data structures in such a way that all correctness invariants are intrinsically maintained. Then, we describe and verify precise cost bounds on the operations, making use of the red-black tree invariants. Finally, we implement standard algorithms on sequences using the simple join-based signature and bound their cost in the case that red-black trees are used as the underlying implementation. All proofs are formally mechanized using the embedding of $\textbf{calf}$ in the Agda theorem prover.
Image denoising is a fundamental and challenging task in the field of computer vision. Most supervised denoising methods learn to reconstruct clean images from noisy inputs, which have intrinsic spectral bias and tend to produce over-smoothed and blurry images. Recently, researchers have explored diffusion models to generate high-frequency details in image restoration tasks, but these models do not guarantee that the generated texture aligns with real images, leading to undesirable artifacts. To address the trade-off between visual appeal and fidelity of high-frequency details in denoising tasks, we propose a novel approach called the Reconstruct-and-Generate Diffusion Model (RnG). Our method leverages a reconstructive denoising network to recover the majority of the underlying clean signal, which serves as the initial estimation for subsequent steps to maintain fidelity. Additionally, it employs a diffusion algorithm to generate residual high-frequency details, thereby enhancing visual quality. We further introduce a two-stage training scheme to ensure effective collaboration between the reconstructive and generative modules of RnG. To reduce undesirable texture introduced by the diffusion model, we also propose an adaptive step controller that regulates the number of inverse steps applied by the diffusion model, allowing control over the level of high-frequency details added to each patch as well as saving the inference computational cost. Through our proposed RnG, we achieve a better balance between perception and distortion. We conducted extensive experiments on both synthetic and real denoising datasets, validating the superiority of the proposed approach.
Improving the overall equipment effectiveness (OEE) of machines on the shop floor is crucial to ensure the productivity and efficiency of manufacturing systems. To achieve the goal of increased OEE, there is a need to develop flexible runtime control strategies for the system. Decentralized strategies, such as multi-agent systems, have proven effective in improving system flexibility. However, runtime multi-agent control of complex manufacturing systems can be challenging as the agents require extensive communication and computational efforts to coordinate agent activities. One way to improve communication speed and cooperation capabilities between system agents is by providing a common language between these agents to represent knowledge about system behavior. The integration of ontology into multi-agent systems in manufacturing provides agents with the capability to continuously update and refine their knowledge in a global context. This paper contributes to the design of an ontology for multi-agent systems in manufacturing, introducing an extendable knowledge base and a methodology for continuously updating the production data by agents during runtime. To demonstrate the effectiveness of the proposed framework, a case study is conducted in a simulated environment, which shows improvements in OEE during runtime.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.