亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We focus on addressing the challenges in responsible beauty product recommendation, particularly when it involves comparing the product's color with a person's skin tone, such as for foundation and concealer products. To make accurate recommendations, it is crucial to infer both the product attributes and the product specific facial features such as skin conditions or tone. However, while many product photos are taken under good light conditions, face photos are taken from a wide range of conditions. The features extracted using the photos from ill-illuminated environment can be highly misleading or even be incompatible to be compared with the product attributes. Hence bad illumination condition can severely degrade quality of the recommendation. We introduce a machine learning framework for illumination assessment which classifies images into having either good or bad illumination condition. We then build an automatic user guidance tool which informs a user holding their camera if their illumination condition is good or bad. This way, the user is provided with rapid feedback and can interactively control how the photo is taken for their recommendation. Only a few studies are dedicated to this problem, mostly due to the lack of dataset that is large, labeled, and diverse both in terms of skin tones and light patterns. Lack of such dataset leads to neglecting skin tone diversity. Therefore, We begin by constructing a diverse synthetic dataset that simulates various skin tones and light patterns in addition to an existing facial image dataset. Next, we train a Convolutional Neural Network (CNN) for illumination assessment that outperforms the existing solutions using the synthetic dataset. Finally, we analyze how the our work improves the shade recommendation for various foundation products.

相關內容

Formal verification of multi-agent systems is hard, both theoretically and in practice. In particular, studies that use a single verification technique typically show limited efficiency, and allow to verify only toy examples. Here, we propose some new techniques and combine them with several recently developed ones to see what progress can be achieved for a real-life scenario. Namely, we use fixpoint approximation, domination-based strategy search, partial order reduction, and parallelization to verify heterogeneous scalable models of the Selene e-voting protocol. The experimental results show that the combination allows to verify requirements for much more sophisticated models than previously.

Backpropagation within neural networks leverages a fundamental element of automatic differentiation, which is referred to as the reverse mode differentiation, or vector Jacobian Product (VJP) or, in the context of differential geometry, known as the pull-back process. The computation of gradient is important as update of neural network parameters is performed using gradient descent method. In this study, we present a genric randomized method, which updates the parameters of neural networks by using directional derivatives of loss functions computed efficiently by using forward mode AD or Jacobian vector Product (JVP). These JVP are computed along the random directions sampled from different probability distributions e.g., Bernoulli, Normal, Wigner, Laplace and Uniform distributions. The computation of gradient is performed during the forward pass of the neural network. We also present a rigorous analysis of the presented methods providing the rate of convergence along with the computational experiments deployed in scientific Machine learning in particular physics-informed neural networks and Deep Operator Networks.

Despite the impressive performance achieved by pre-trained language-and-vision models in downstream tasks, it remains an open question whether this reflects a proper understanding of image-text interaction. In this work, we explore to what extent they handle basic linguistic constructions -- active-passive voice, coordination, and relative clauses -- that even preschool children can typically master. We present BLA, a novel, automatically constructed benchmark to evaluate multimodal models on these Basic Language Abilities. We show that different types of Transformer-based systems, such as CLIP, ViLBERT, and BLIP2, generally struggle with BLA in a zero-shot setting, in line with previous findings. Our experiments, in particular, show that most of the tested models only marginally benefit when fine-tuned or prompted with construction-specific samples. Yet, the generative BLIP2 shows promising trends, especially in an in-context learning setting. This opens the door to using BLA not only as an evaluation benchmark but also to improve models' basic language abilities.

Graph neural networks (GNNs) are widely used for modeling complex interactions between entities represented as vertices of a graph. Despite recent efforts to theoretically analyze the expressive power of GNNs, a formal characterization of their ability to model interactions is lacking. The current paper aims to address this gap. Formalizing strength of interactions through an established measure known as separation rank, we quantify the ability of certain GNNs to model interaction between a given subset of vertices and its complement, i.e. between the sides of a given partition of input vertices. Our results reveal that the ability to model interaction is primarily determined by the partition's walk index -- a graph-theoretical characteristic defined by the number of walks originating from the boundary of the partition. Experiments with common GNN architectures corroborate this finding. As a practical application of our theory, we design an edge sparsification algorithm named Walk Index Sparsification (WIS), which preserves the ability of a GNN to model interactions when input edges are removed. WIS is simple, computationally efficient, and in our experiments has markedly outperformed alternative methods in terms of induced prediction accuracy. More broadly, it showcases the potential of improving GNNs by theoretically analyzing the interactions they can model.

Accurate uncertainty quantification in graph neural networks (GNNs) is essential, especially in high-stakes domains where GNNs are frequently employed. Conformal prediction (CP) offers a promising framework for quantifying uncertainty by providing $\textit{valid}$ prediction sets for any black-box model. CP ensures formal probabilistic guarantees that a prediction set contains a true label with a desired probability. However, the size of prediction sets, known as $\textit{inefficiency}$, is influenced by the underlying model and data generating process. On the other hand, Bayesian learning also provides a credible region based on the estimated posterior distribution, but this region is $\textit{well-calibrated}$ only when the model is correctly specified. Building on a recent work that introduced a scaling parameter for constructing valid credible regions from posterior estimate, our study explores the advantages of incorporating a temperature parameter into Bayesian GNNs within CP framework. We empirically demonstrate the existence of temperatures that result in more efficient prediction sets. Furthermore, we conduct an analysis to identify the factors contributing to inefficiency and offer valuable insights into the relationship between CP performance and model calibration.

We propose a model of treatment interference where the response of a unit depends only on its treatment status and the statuses of units within its K-neighborhood. Current methods for detecting interference include carefully designed randomized experiments and conditional randomization tests on a set of focal units. We give guidance on how to choose focal units under this model of interference. We then conduct a simulation study to evaluate the efficacy of existing methods for detecting network interference. We show that this choice of focal units leads to powerful tests of treatment interference which outperform current experimental methods.

Membership inference attacks (MIA) can reveal whether a particular data point was part of the training dataset, potentially exposing sensitive information about individuals. This article explores the fundamental statistical limitations associated with MIAs on machine learning models. More precisely, we first derive the statistical quantity that governs the effectiveness and success of such attacks. Then, we investigate several situations for which we provide bounds on this quantity of interest. This allows us to infer the accuracy of potential attacks as a function of the number of samples and other structural parameters of learning models, which in some cases can be directly estimated from the dataset.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Predictions obtained by, e.g., artificial neural networks have a high accuracy but humans often perceive the models as black boxes. Insights about the decision making are mostly opaque for humans. Particularly understanding the decision making in highly sensitive areas such as healthcare or fifinance, is of paramount importance. The decision-making behind the black boxes requires it to be more transparent, accountable, and understandable for humans. This survey paper provides essential definitions, an overview of the different principles and methodologies of explainable Supervised Machine Learning (SML). We conduct a state-of-the-art survey that reviews past and recent explainable SML approaches and classifies them according to the introduced definitions. Finally, we illustrate principles by means of an explanatory case study and discuss important future directions.

Recent years have seen important advances in the quality of state-of-the-art models, but this has come at the expense of models becoming less interpretable. This survey presents an overview of the current state of Explainable AI (XAI), considered within the domain of Natural Language Processing (NLP). We discuss the main categorization of explanations, as well as the various ways explanations can be arrived at and visualized. We detail the operations and explainability techniques currently available for generating explanations for NLP model predictions, to serve as a resource for model developers in the community. Finally, we point out the current gaps and encourage directions for future work in this important research area.

北京阿比特科技有限公司