亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Artificial General Intelligence (AGI), possessing the capacity to comprehend, learn, and execute tasks with human cognitive abilities, engenders significant anticipation and intrigue across scientific, commercial, and societal arenas. This fascination extends particularly to the Internet of Things (IoT), a landscape characterized by the interconnection of countless devices, sensors, and systems, collectively gathering and sharing data to enable intelligent decision-making and automation. This research embarks on an exploration of the opportunities and challenges towards achieving AGI in the context of the IoT. Specifically, it starts by outlining the fundamental principles of IoT and the critical role of Artificial Intelligence (AI) in IoT systems. Subsequently, it delves into AGI fundamentals, culminating in the formulation of a conceptual framework for AGI's seamless integration within IoT. The application spectrum for AGI-infused IoT is broad, encompassing domains ranging from smart grids, residential environments, manufacturing, and transportation to environmental monitoring, agriculture, healthcare, and education. However, adapting AGI to resource-constrained IoT settings necessitates dedicated research efforts. Furthermore, the paper addresses constraints imposed by limited computing resources, intricacies associated with large-scale IoT communication, as well as the critical concerns pertaining to security and privacy.

相關內容

Named Entity Recognition (NER) remains challenging due to the complex entities, like nested, overlapping, and discontinuous entities. Existing approaches, such as sequence-to-sequence (Seq2Seq) generation and span-based classification, have shown impressive performance on various NER subtasks, but they are difficult to scale to datasets with longer input text because of either exposure bias issue or inefficient computation. In this paper, we propose a novel Sequence-to-Forest generation paradigm, S2F-NER, which can directly extract entities in sentence via a Forest decoder that decode multiple entities in parallel rather than sequentially. Specifically, our model generate each path of each tree in forest autoregressively, where the maximum depth of each tree is three (which is the shortest feasible length for complex NER and is far smaller than the decoding length of Seq2Seq). Based on this novel paradigm, our model can elegantly mitigates the exposure bias problem and keep the simplicity of Seq2Seq. Experimental results show that our model significantly outperforms the baselines on three discontinuous NER datasets and on two nested NER datasets, especially for discontinuous entity recognition.

We propose a self-correction mechanism for Large Language Models (LLMs) to mitigate issues such as toxicity and fact hallucination. This method involves refining model outputs through an ensemble of critics and the model's own feedback. Drawing inspiration from human behavior, we explore whether LLMs can emulate the self-correction process observed in humans who often engage in self-reflection and seek input from others to refine their understanding of complex topics. Our approach is model-agnostic and can be applied across various domains to enhance trustworthiness by addressing fairness, bias, and robustness concerns. We consistently observe performance improvements in LLMs for reducing toxicity and correcting factual errors.

Generative Artificial Intelligence (GAI) possesses the capabilities of generating realistic data and facilitating advanced decision-making. By integrating GAI into modern Internet of Things (IoT), Generative Internet of Things (GIoT) is emerging and holds immense potential to revolutionize various aspects of society, enabling more efficient and intelligent IoT applications, such as smart surveillance and voice assistants. In this article, we present the concept of GIoT and conduct an exploration of its potential prospects. Specifically, we first overview four GAI techniques and investigate promising GIoT applications. Then, we elaborate on the main challenges in enabling GIoT and propose a general GAI-based secure incentive mechanism framework to address them, in which we adopt Generative Diffusion Models (GDMs) for incentive mechanism designs and apply blockchain technologies for secure GIoT management. Moreover, we conduct a case study on modern Internet of Vehicle traffic monitoring, which utilizes GDMs to generate effective contracts for incentivizing users to contribute sensing data with high quality. Finally, we suggest several open directions worth investigating for the future popularity of GIoT.

Background: Given that VR is applied in multiple domains, understanding the effects of cyber-sickness on human cognition and motor skills and the factors contributing to cybersickness gains urgency. This study aimed to explore the predictors of cybersickness and its interplay with cognitive and motor skills. Methods: 30 participants, 20-45 years old, completed the MSSQ and the CSQ-VR, and were immersed in VR. During immersion, they were exposed to a roller coaster ride. Before and after the ride, participants responded to CSQ-VR and performed VR-based cognitive and psychomotor tasks. Post-VR session, participants completed the CSQ-VR again. Results: Motion sickness susceptibility, during adulthood, was the most prominent predictor of cybersickness. Pupil dilation emerged as a significant predictor of cybersickness. Experience in videogaming was a significant predictor of both cybersickness and cognitive/motor functions. Cybersickness negatively affected visuospatial working memory and psychomotor skills. Overall cybersickness', nausea and vestibular symptoms' intensities significantly decreased after removing the VR headset. Conclusions: In order of importance, motion sickness susceptibility and gaming experience are significant predictors of cybersickness. Pupil dilation appears as a cybersickness' biomarker. Cybersickness negatively affects visuospatial working memory and psychomotor skills. Cybersickness and its effects on performance should be examined during and not after immersion.

High sample complexity has long been a challenge for RL. On the other hand, humans learn to perform tasks not only from interaction or demonstrations, but also by reading unstructured text documents, e.g., instruction manuals. Instruction manuals and wiki pages are among the most abundant data that could inform agents of valuable features and policies or task-specific environmental dynamics and reward structures. Therefore, we hypothesize that the ability to utilize human-written instruction manuals to assist learning policies for specific tasks should lead to a more efficient and better-performing agent. We propose the Read and Reward framework. Read and Reward speeds up RL algorithms on Atari games by reading manuals released by the Atari game developers. Our framework consists of a QA Extraction module that extracts and summarizes relevant information from the manual and a Reasoning module that evaluates object-agent interactions based on information from the manual. An auxiliary reward is then provided to a standard A2C RL agent, when interaction is detected. Experimentally, various RL algorithms obtain significant improvement in performance and training speed when assisted by our design.

A major challenge in the practical use of Machine Translation (MT) is that users lack guidance to make informed decisions about when to rely on outputs. Progress in quality estimation research provides techniques to automatically assess MT quality, but these techniques have primarily been evaluated in vitro by comparison against human judgments outside of a specific context of use. This paper evaluates quality estimation feedback in vivo with a human study simulating decision-making in high-stakes medical settings. Using Emergency Department discharge instructions, we study how interventions based on quality estimation versus backtranslation assist physicians in deciding whether to show MT outputs to a patient. We find that quality estimation improves appropriate reliance on MT, but backtranslation helps physicians detect more clinically harmful errors that QE alone often misses.

Graph Neural Networks (GNNs) have gained significant attention owing to their ability to handle graph-structured data and the improvement in practical applications. However, many of these models prioritize high utility performance, such as accuracy, with a lack of privacy consideration, which is a major concern in modern society where privacy attacks are rampant. To address this issue, researchers have started to develop privacy-preserving GNNs. Despite this progress, there is a lack of a comprehensive overview of the attacks and the techniques for preserving privacy in the graph domain. In this survey, we aim to address this gap by summarizing the attacks on graph data according to the targeted information, categorizing the privacy preservation techniques in GNNs, and reviewing the datasets and applications that could be used for analyzing/solving privacy issues in GNNs. We also outline potential directions for future research in order to build better privacy-preserving GNNs.

Explainable Artificial Intelligence (XAI) is transforming the field of Artificial Intelligence (AI) by enhancing the trust of end-users in machines. As the number of connected devices keeps on growing, the Internet of Things (IoT) market needs to be trustworthy for the end-users. However, existing literature still lacks a systematic and comprehensive survey work on the use of XAI for IoT. To bridge this lacking, in this paper, we address the XAI frameworks with a focus on their characteristics and support for IoT. We illustrate the widely-used XAI services for IoT applications, such as security enhancement, Internet of Medical Things (IoMT), Industrial IoT (IIoT), and Internet of City Things (IoCT). We also suggest the implementation choice of XAI models over IoT systems in these applications with appropriate examples and summarize the key inferences for future works. Moreover, we present the cutting-edge development in edge XAI structures and the support of sixth-generation (6G) communication services for IoT applications, along with key inferences. In a nutshell, this paper constitutes the first holistic compilation on the development of XAI-based frameworks tailored for the demands of future IoT use cases.

Recently, Mutual Information (MI) has attracted attention in bounding the generalization error of Deep Neural Networks (DNNs). However, it is intractable to accurately estimate the MI in DNNs, thus most previous works have to relax the MI bound, which in turn weakens the information theoretic explanation for generalization. To address the limitation, this paper introduces a probabilistic representation of DNNs for accurately estimating the MI. Leveraging the proposed MI estimator, we validate the information theoretic explanation for generalization, and derive a tighter generalization bound than the state-of-the-art relaxations.

Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.

北京阿比特科技有限公司