亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The commonly used latent space embedding techniques, such as Principal Component Analysis, Factor Analysis, and manifold learning techniques, are typically used for learning effective representations of homogeneous data. However, they do not readily extend to heterogeneous data that are a combination of numerical and categorical variables, e.g., arising from linked GPS and text data. In this paper, we are interested in learning probabilistic generative models from high-dimensional heterogeneous data in an unsupervised fashion. The learned generative model provides latent unified representations that capture the factors common to the multiple dimensions of the data, and thus enable fusing multimodal data for various machine learning tasks. Following a Bayesian approach, we propose a general framework that combines disparate data types through the natural parameterization of the exponential family of distributions. To scale the model inference to millions of instances with thousands of features, we use the Laplace-Bernstein approximation for posterior computations involving nonlinear link functions. The proposed algorithm is presented in detail for the commonly encountered heterogeneous datasets with real-valued (Gaussian) and categorical (multinomial) features. Experiments on two high-dimensional and heterogeneous datasets (NYC Taxi and MovieLens-10M) demonstrate the scalability and competitive performance of the proposed algorithm on different machine learning tasks such as anomaly detection, data imputation, and recommender systems.

相關內容

In this paper we propose a tool for high-dimensional approximation based on trigonometric polynomials where we allow only low-dimensional interactions of variables. In a general high-dimensional setting, it is already possible to deal with special sampling sets such as sparse grids or rank-1 lattices. This requires black-box access to the function, i.e., the ability to evaluate it at any point. Here, we focus on scattered data points and grouped frequency index sets along the dimensions. From there we propose a fast matrix-vector multiplication, the grouped Fourier transform, for high-dimensional grouped index sets. Those transformations can be used in the application of the previously introduced method of approximating functions with low superposition dimension based on the analysis of variance (ANOVA) decomposition where there is a one-to-one correspondence from the ANOVA terms to our proposed groups. The method is able to dynamically detected important sets of ANOVA terms in the approximation. In this paper, we consider the involved least-squares problem and add different forms of regularization: Classical Tikhonov-regularization, namely, regularized least squares and the technique of group lasso, which promotes sparsity in the groups. As for the latter, there are no explicit solution formulas which is why we applied the fast iterative shrinking-thresholding algorithm to obtain the minimizer. Moreover, we discuss the possibility of incorporating smoothness information into the least-squares problem. Numerical experiments in under-, overdetermined, and noisy settings indicate the applicability of our algorithms. While we consider periodic functions, the idea can be directly generalized to non-periodic functions as well.

In binary classification, imbalance refers to situations in which one class is heavily under-represented. This issue is due to either a data collection process or because one class is indeed rare in a population. Imbalanced classification frequently arises in applications such as biology, medicine, engineering, and social sciences. In this manuscript, for the first time, we theoretically study the impact of imbalance class sizes on the linear discriminant analysis (LDA) in high dimensions. We show that due to data scarcity in one class, referred to as the minority class, and high-dimensionality of the feature space, the LDA ignores the minority class yielding a maximum misclassification rate. We then propose a new construction of a hard-thresholding rule based on a divide-and-conquer technique that reduces the large difference between the misclassification rates. We show that the proposed method is asymptotically optimal. We further study two well-known sparse versions of the LDA in imbalanced cases. We evaluate the finite-sample performance of different methods using simulations and by analyzing two real data sets. The results show that our method either outperforms its competitors or has comparable performance based on a much smaller subset of selected features, while being computationally more efficient.

Deep learning has revolutionized speech recognition, image recognition, and natural language processing since 2010, each involving a single modality in the input signal. However, many applications in artificial intelligence involve more than one modality. It is therefore of broad interest to study the more difficult and complex problem of modeling and learning across multiple modalities. In this paper, a technical review of the models and learning methods for multimodal intelligence is provided. The main focus is the combination of vision and natural language, which has become an important area in both computer vision and natural language processing research communities. This review provides a comprehensive analysis of recent work on multimodal deep learning from three new angles - learning multimodal representations, the fusion of multimodal signals at various levels, and multimodal applications. On multimodal representation learning, we review the key concept of embedding, which unifies the multimodal signals into the same vector space and thus enables cross-modality signal processing. We also review the properties of the many types of embedding constructed and learned for general downstream tasks. On multimodal fusion, this review focuses on special architectures for the integration of the representation of unimodal signals for a particular task. On applications, selected areas of a broad interest in current literature are covered, including caption generation, text-to-image generation, and visual question answering. We believe this review can facilitate future studies in the emerging field of multimodal intelligence for the community.

This paper focuses on two fundamental tasks of graph analysis: community detection and node representation learning, which capture the global and local structures of graphs, respectively. In the current literature, these two tasks are usually independently studied while they are actually highly correlated. We propose a probabilistic generative model called vGraph to learn community membership and node representation collaboratively. Specifically, we assume that each node can be represented as a mixture of communities, and each community is defined as a multinomial distribution over nodes. Both the mixing coefficients and the community distribution are parameterized by the low-dimensional representations of the nodes and communities. We designed an effective variational inference algorithm which regularizes the community membership of neighboring nodes to be similar in the latent space. Experimental results on multiple real-world graphs show that vGraph is very effective in both community detection and node representation learning, outperforming many competitive baselines in both tasks. We show that the framework of vGraph is quite flexible and can be easily extended to detect hierarchical communities.

Outlier detection is an important topic in machine learning and has been used in a wide range of applications. In this paper, we approach outlier detection as a binary-classification issue by sampling potential outliers from a uniform reference distribution. However, due to the sparsity of data in high-dimensional space, a limited number of potential outliers may fail to provide sufficient information to assist the classifier in describing a boundary that can separate outliers from normal data effectively. To address this, we propose a novel Single-Objective Generative Adversarial Active Learning (SO-GAAL) method for outlier detection, which can directly generate informative potential outliers based on the mini-max game between a generator and a discriminator. Moreover, to prevent the generator from falling into the mode collapsing problem, the stop node of training should be determined when SO-GAAL is able to provide sufficient information. But without any prior information, it is extremely difficult for SO-GAAL. Therefore, we expand the network structure of SO-GAAL from a single generator to multiple generators with different objectives (MO-GAAL), which can generate a reasonable reference distribution for the whole dataset. We empirically compare the proposed approach with several state-of-the-art outlier detection methods on both synthetic and real-world datasets. The results show that MO-GAAL outperforms its competitors in the majority of cases, especially for datasets with various cluster types or high irrelevant variable ratio.

The classification of acoustic environments allows for machines to better understand the auditory world around them. The use of deep learning in order to teach machines to discriminate between different rooms is a new area of research. Similarly to other learning tasks, this task suffers from the high-dimensionality and the limited availability of training data. Data augmentation methods have proven useful in addressing this issue in the tasks of sound event detection and scene classification. This paper proposes a method for data augmentation for the task of room classification from reverberant speech. Generative Adversarial Networks (GANs) are trained that generate artificial data as if they were measured in real rooms. This provides additional training examples to the classifiers without the need for any additional data collection, which is time-consuming and often impractical. A representation of acoustic environments is proposed, which is used to train the GANs. The representation is based on a sparse model for the early reflections, a stochastic model for the reverberant tail and a mixing mechanism between the two. In the experiments shown, the proposed data augmentation method increases the test accuracy of a CNN-RNN room classifier from 89.4% to 95.5%.

Meta-graph is currently the most powerful tool for similarity search on heterogeneous information networks,where a meta-graph is a composition of meta-paths that captures the complex structural information. However, current relevance computing based on meta-graph only considers the complex structural information, but ignores its embedded meta-paths information. To address this problem, we proposeMEta-GrAph-based network embedding models, called MEGA and MEGA++, respectively. The MEGA model uses normalized relevance or similarity measures that are derived from a meta-graph and its embedded meta-paths between nodes simultaneously, and then leverages tensor decomposition method to perform node embedding. The MEGA++ further facilitates the use of coupled tensor-matrix decomposition method to obtain a joint embedding for nodes, which simultaneously considers the hidden relations of all meta information of a meta-graph.Extensive experiments on two real datasets demonstrate thatMEGA and MEGA++ are more effective than state-of-the-art approaches.

Most existing knowledge graphs (KGs) in academic domains suffer from problems of insufficient multi-relational information, name ambiguity and improper data format for large-scale machine processing. In this paper, we present AceKG, a new large-scale KG in academic domain. AceKG not only provides clean academic information, but also offers a large-scale benchmark dataset for researchers to conduct challenging data mining projects including link prediction, community detection and scholar classification. Specifically, AceKG describes 3.13 billion triples of academic facts based on a consistent ontology, including necessary properties of papers, authors, fields of study, venues and institutes, as well as the relations among them. To enrich the proposed knowledge graph, we also perform entity alignment with existing databases and rule-based inference. Based on AceKG, we conduct experiments of three typical academic data mining tasks and evaluate several state-of- the-art knowledge embedding and network representation learning approaches on the benchmark datasets built from AceKG. Finally, we discuss several promising research directions that benefit from AceKG.

Generative models (GMs) such as Generative Adversary Network (GAN) and Variational Auto-Encoder (VAE) have thrived these years and achieved high quality results in generating new samples. Especially in Computer Vision, GMs have been used in image inpainting, denoising and completion, which can be treated as the inference from observed pixels to corrupted pixels. However, images are hierarchically structured which are quite different from many real-world inference scenarios with non-hierarchical features. These inference scenarios contain heterogeneous stochastic variables and irregular mutual dependences. Traditionally they are modeled by Bayesian Network (BN). However, the learning and inference of BN model are NP-hard thus the number of stochastic variables in BN is highly constrained. In this paper, we adapt typical GMs to enable heterogeneous learning and inference in polynomial time.We also propose an extended autoregressive (EAR) model and an EAR with adversary loss (EARA) model and give theoretical results on their effectiveness. Experiments on several BN datasets show that our proposed EAR model achieves the best performance in most cases compared to other GMs. Except for black box analysis, we've also done a serial of experiments on Markov border inference of GMs for white box analysis and give theoretical results.

The task of {\em data fusion} is to identify the true values of data items (eg, the true date of birth for {\em Tom Cruise}) among multiple observed values drawn from different sources (eg, Web sites) of varying (and unknown) reliability. A recent survey\cite{LDL+12} has provided a detailed comparison of various fusion methods on Deep Web data. In this paper, we study the applicability and limitations of different fusion techniques on a more challenging problem: {\em knowledge fusion}. Knowledge fusion identifies true subject-predicate-object triples extracted by multiple information extractors from multiple information sources. These extractors perform the tasks of entity linkage and schema alignment, thus introducing an additional source of noise that is quite different from that traditionally considered in the data fusion literature, which only focuses on factual errors in the original sources. We adapt state-of-the-art data fusion techniques and apply them to a knowledge base with 1.6B unique knowledge triples extracted by 12 extractors from over 1B Web pages, which is three orders of magnitude larger than the data sets used in previous data fusion papers. We show great promise of the data fusion approaches in solving the knowledge fusion problem, and suggest interesting research directions through a detailed error analysis of the methods.

北京阿比特科技有限公司