亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The pharmaceutical manufacturing faces critical challenges due to the global threat of counterfeit drugs. This paper proposes a new approach of protected QR codes to secure unique product information for safeguarding the pharmaceutical supply chain. The proposed solution integrates secure QR code generation and encrypted data transmission to establish a comprehensive anti-counterfeit ecosystem. The protected QR codes encapsulate product information that cannot be identified using traditional QR code scanners which protect the information against replication and tampering. The system is developed with scalability in mind, which can be easily implemented without introducing any additional modification in the traditional supply chain.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · 機器人 · Extensibility · CASES · Engineering ·
2024 年 6 月 4 日

The Robot Operating System (ROS) has significantly gained popularity among robotic engineers and researchers over the past five years, primarily due to its powerful infrastructure for node communication, which enables developers to build modular and large robotic applications. However, ROS presents a steep learning curve and lacks the intuitive usability of vendor-specific robotic Graphical User Interfaces (GUIs). Moreover, its modular and distributed nature complicates the control and monitoring of extensive systems, even for advanced users. To address these challenges, this paper proposes a highly adaptable and reconfigurable web-based GUI for intuitively controlling, monitoring, and configuring complex ROS-based robotic systems. The GUI leverages ROSBridge and roslibjs to ensure seamless communication with ROS systems via topics and services. Designed as a versatile platform, the GUI allows for the selective incorporation of modular features to accommodate diverse robotic systems and applications. An initial set of commonly used features in robotic applications is presented. To demonstrate its reconfigurability, the GUI was customized and tested for four industrial use cases, receiving positive feedback. The project's repository has been made publicly available to support the robotics community and lower the entry barrier for ROS in industrial applications.

As with any fuzzer, directing Generator-Based Fuzzers (GBF) to reach particular code targets can increase the fuzzer's effectiveness. In previous work, coverage-guided fuzzers used a mix of static analysis, taint analysis, and constraint-solving approaches to address this problem. However, none of these techniques were particularly crafted for GBF where input generators are used to construct program inputs. The observation is that input generators carry information about the input structure that is naturally present through the typing composition of the program input. In this paper, we introduce a type-based mutation heuristic, along with constant string lookup, for Java GBF. Our key intuition is that if one can identify which sub-part (types) of the input will likely influence the branching decision, then focusing on mutating the choices of the generators constructing these types is likely to achieve the desired coverages. We used our technique to fuzz AWSLambda applications. Results compared to a baseline GBF tool show an almost 20\% average improvement in application coverage, and larger improvements when third-party code is included.

This paper focuses on transferring control policies between robot manipulators with different morphology. While reinforcement learning (RL) methods have shown successful results in robot manipulation tasks, transferring a trained policy from simulation to a real robot or deploying it on a robot with different states, actions, or kinematics is challenging. To achieve cross-embodiment policy transfer, our key insight is to project the state and action spaces of the source and target robots to a common latent space representation. We first introduce encoders and decoders to associate the states and actions of the source robot with a latent space. The encoders, decoders, and a latent space control policy are trained simultaneously using loss functions measuring task performance, latent dynamics consistency, and encoder-decoder ability to reconstruct the original states and actions. To transfer the learned control policy, we only need to train target encoders and decoders that align a new target domain to the latent space. We use generative adversarial training with cycle consistency and latent dynamics losses without access to the task reward or reward tuning in the target domain. We demonstrate sim-to-sim and sim-to-real manipulation policy transfer with source and target robots of different states, actions, and embodiments. The source code is available at \url{//github.com/ExistentialRobotics/cross_embodiment_transfer}.

Collaborative Filtering (CF) typically suffers from the significant challenge of popularity bias due to the uneven distribution of items in real-world datasets. This bias leads to a significant accuracy gap between popular and unpopular items. It not only hinders accurate user preference understanding but also exacerbates the Matthew effect in recommendation systems. To alleviate popularity bias, existing efforts focus on emphasizing unpopular items or separating the correlation between item representations and their popularity. Despite the effectiveness, existing works still face two persistent challenges: (1) how to extract common supervision signals from popular items to improve the unpopular item representations, and (2) how to alleviate the representation separation caused by popularity bias. In this work, we conduct an empirical analysis of popularity bias and propose Popularity-Aware Alignment and Contrast (PAAC) to address two challenges. Specifically, we use the common supervisory signals modeled in popular item representations and propose a novel popularity-aware supervised alignment module to learn unpopular item representations. Additionally, we suggest re-weighting the contrastive learning loss to mitigate the representation separation from a popularity-centric perspective. Finally, we validate the effectiveness and rationale of PAAC in mitigating popularity bias through extensive experiments on three real-world datasets. Our code is available at //github.com/miaomiao-cai2/KDD2024-PAAC.

The Sequential Sentence Classification task within the domain of medical abstracts, termed as SSC, involves the categorization of sentences into pre-defined headings based on their roles in conveying critical information in the abstract. In the SSC task, sentences are sequentially related to each other. For this reason, the role of sentence embeddings is crucial for capturing both the semantic information between words in the sentence and the contextual relationship of sentences within the abstract, which then enhances the SSC system performance. In this paper, we propose a LSTM-based deep learning network with a focus on creating comprehensive sentence representation at the sentence level. To demonstrate the efficacy of the created sentence representation, a system utilizing these sentence embeddings is also developed, which consists of a Convolutional-Recurrent neural network (C-RNN) at the abstract level and a multi-layer perception network (MLP) at the segment level. Our proposed system yields highly competitive results compared to state-of-the-art systems and further enhances the F1 scores of the baseline by 1.0%, 2.8%, and 2.6% on the benchmark datasets PudMed 200K RCT, PudMed 20K RCT and NICTA-PIBOSO, respectively. This indicates the significant impact of improving sentence representation on boosting model performance.

Defensive deception is a promising approach for cyberdefense. Although defensive deception is increasingly popular in the research community, there has not been a systematic investigation of its key components, the underlying principles, and its tradeoffs in various problem settings. This survey paper focuses on defensive deception research centered on game theory and machine learning, since these are prominent families of artificial intelligence approaches that are widely employed in defensive deception. This paper brings forth insights, lessons, and limitations from prior work. It closes with an outline of some research directions to tackle major gaps in current defensive deception research.

Search in social networks such as Facebook poses different challenges than in classical web search: besides the query text, it is important to take into account the searcher's context to provide relevant results. Their social graph is an integral part of this context and is a unique aspect of Facebook search. While embedding-based retrieval (EBR) has been applied in eb search engines for years, Facebook search was still mainly based on a Boolean matching model. In this paper, we discuss the techniques for applying EBR to a Facebook Search system. We introduce the unified embedding framework developed to model semantic embeddings for personalized search, and the system to serve embedding-based retrieval in a typical search system based on an inverted index. We discuss various tricks and experiences on end-to-end optimization of the whole system, including ANN parameter tuning and full-stack optimization. Finally, we present our progress on two selected advanced topics about modeling. We evaluated EBR on verticals for Facebook Search with significant metrics gains observed in online A/B experiments. We believe this paper will provide useful insights and experiences to help people on developing embedding-based retrieval systems in search engines.

The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.

We investigate the problem of automatically determining what type of shoe left an impression found at a crime scene. This recognition problem is made difficult by the variability in types of crime scene evidence (ranging from traces of dust or oil on hard surfaces to impressions made in soil) and the lack of comprehensive databases of shoe outsole tread patterns. We find that mid-level features extracted by pre-trained convolutional neural nets are surprisingly effective descriptors for this specialized domains. However, the choice of similarity measure for matching exemplars to a query image is essential to good performance. For matching multi-channel deep features, we propose the use of multi-channel normalized cross-correlation and analyze its effectiveness. Our proposed metric significantly improves performance in matching crime scene shoeprints to laboratory test impressions. We also show its effectiveness in other cross-domain image retrieval problems: matching facade images to segmentation labels and aerial photos to map images. Finally, we introduce a discriminatively trained variant and fine-tune our system through our proposed metric, obtaining state-of-the-art performance.

Attention mechanism has been used as an ancillary means to help RNN or CNN. However, the Transformer (Vaswani et al., 2017) recently recorded the state-of-the-art performance in machine translation with a dramatic reduction in training time by solely using attention. Motivated by the Transformer, Directional Self Attention Network (Shen et al., 2017), a fully attention-based sentence encoder, was proposed. It showed good performance with various data by using forward and backward directional information in a sentence. But in their study, not considered at all was the distance between words, an important feature when learning the local dependency to help understand the context of input text. We propose Distance-based Self-Attention Network, which considers the word distance by using a simple distance mask in order to model the local dependency without losing the ability of modeling global dependency which attention has inherent. Our model shows good performance with NLI data, and it records the new state-of-the-art result with SNLI data. Additionally, we show that our model has a strength in long sentences or documents.

北京阿比特科技有限公司