The great diversity of end-user tasks ranging from manufacturing environments to personal homes makes pre-programming robots for general purpose applications extremely challenging. In fact, teaching robots new actions from scratch that can be reused for previously unseen tasks remains a difficult challenge and is generally left up to robotics experts. In this work, we present iRoPro, an interactive Robot Programming framework that allows end-users with little to no technical background to teach a robot new reusable actions. We combine Programming by Demonstration and Automated Planning techniques to allow the user to construct the robot's knowledge base by teaching new actions by kinesthetic demonstration. The actions are generalised and reused with a task planner to solve previously unseen problems defined by the user. We implement iRoPro as an end-to-end system on a Baxter Research Robot to simultaneously teach low- and high-level actions by demonstration that the user can customise via a Graphical User Interface to adapt to their specific use case. To evaluate the feasibility of our approach, we first conducted pre-design experiments to better understand the user's adoption of involved concepts and the proposed robot programming process. We compare results with post-design experiments, where we conducted a user study to validate the usability of our approach with real end-users. Overall, we showed that users with different programming levels and educational backgrounds can easily learn and use iRoPro and its robot programming process.
Massive multiple-input multiple-output (MIMO) is believed to deliver unrepresented spectral efficiency gains for 5G and beyond. However, a practical challenge arises during its commercial deployment, which is known as the "curse of mobility". The performance of massive MIMO drops alarmingly when the velocity level of user increases. In this paper, we tackle the problem in frequency division duplex (FDD) massive MIMO with a novel Channel State Information (CSI) acquisition framework. A joint angle-delay-Doppler (JADD) wideband beamformer is proposed for channel training. Our idea consists in the exploitation of the partial channel reciprocity of FDD and the angle-delay-Doppler channel structure. More precisely, the base station (BS) estimates the angle-delay-Doppler information of the UL channel based on UL pilots using Matrix Pencil method. It then computes the wideband JADD beamformers according to the extracted parameters. Afterwards, the user estimates and feeds back some scalar coefficients for the BS to reconstruct the predicted DL channel. Asymptotic analysis shows that the CSI prediction error converges to zero when the number of BS antennas and the bandwidth increases. Numerical results with industrial channel model demonstrate that our framework can well adapt to high speed (350 km/h), large CSI delay (10 ms) and channel sample noise.
Simulators perform an important role in prototyping, debugging, and benchmarking new advances in robotics and learning for control. Although many physics engines exist, some aspects of the real world are harder than others to simulate. One of the aspects that have so far eluded accurate simulation is touch sensing. To address this gap, we present TACTO - a fast, flexible, and open-source simulator for vision-based tactile sensors. This simulator allows to render realistic high-resolution touch readings at hundreds of frames per second, and can be easily configured to simulate different vision-based tactile sensors, including DIGIT and OmniTact. In this paper, we detail the principles that drove the implementation of TACTO and how they are reflected in its architecture. We demonstrate TACTO on a perceptual task, by learning to predict grasp stability using touch from 1 million grasps, and on a marble manipulation control task. Moreover, we provide a proof-of-concept that TACTO can be successfully used for Sim2Real applications. We believe that TACTO is a step towards the widespread adoption of touch sensing in robotic applications, and to enable machine learning practitioners interested in multi-modal learning and control. TACTO is open-source at //github.com/facebookresearch/tacto.
Wireless energy transfer (WET) is a ground-breaking technology for cutting the last wire between mobile sensors and power grids in smart cities. Yet, WET only offers effective transmission of energy over a short distance. Robotic WET is an emerging paradigm that mounts the energy transmitter on a mobile robot and navigates the robot through different regions in a large area to charge remote energy harvesters. However, it is challenging to determine the robotic charging strategy in an unknown and dynamic environment due to the uncertainty of obstacles. This paper proposes a hardware-in-the-loop joint optimization framework that offers three distinctive features: 1) efficient model updates and re-optimization based on the last-round experimental data; 2) iterative refinement of the anchor list for adaptation to different environments; 3) verification of algorithms in a high-fidelity Gazebo simulator and a multi-robot testbed. Experimental results show that the proposed framework significantly saves the WET mission completion time while satisfying collision avoidance and energy harvesting constraints.
The fundamental goal of business data analysis is to improve business decisions using data. Business users often make decisions to achieve key performance indicators (KPIs) such as increasing customer retention or sales, or decreasing costs. To discover the relationship between data attributes hypothesized to be drivers and those corresponding to KPIs of interest, business users currently need to perform lengthy exploratory analyses. This involves considering multitudes of combinations and scenarios and performing slicing, dicing, and transformations on the data accordingly, e.g., analyzing customer retention across quarters of the year or suggesting optimal media channels across strata of customers. However, the increasing complexity of datasets combined with the cognitive limitations of humans makes it challenging to carry over multiple hypotheses, even for simple datasets. Therefore mentally performing such analyses is hard. Existing commercial tools either provide partial solutions or fail to cater to business users altogether. Here we argue for four functionalities to enable business users to interactively learn and reason about the relationships between sets of data attributes thereby facilitating data-driven decision making. We implement these functionalities in SystemD, an interactive visual data analysis system enabling business users to experiment with the data by asking what-if questions. We evaluate the system through three business use cases: marketing mix modeling, customer retention analysis, and deal closing analysis, and report on feedback from multiple business users. Users find the SystemD functionalities highly useful for quick testing and validation of their hypotheses around their KPIs of interest, addressing their unmet analysis needs. The feedback also suggests that the UX design can be enhanced to further improve the understandability of these functionalities.
In this paper, we explore the problem of developing personalized chatbots. A personalized chatbot is designed as a digital chatting assistant for a user. The key characteristic of a personalized chatbot is that it should have a consistent personality with the corresponding user. It can talk the same way as the user when it is delegated to respond to others' messages. We present a retrieval-based personalized chatbot model, namely IMPChat, to learn an implicit user profile from the user's dialogue history. We argue that the implicit user profile is superior to the explicit user profile regarding accessibility and flexibility. IMPChat aims to learn an implicit user profile through modeling user's personalized language style and personalized preferences separately. To learn a user's personalized language style, we elaborately build language models from shallow to deep using the user's historical responses; To model a user's personalized preferences, we explore the conditional relations underneath each post-response pair of the user. The personalized preferences are dynamic and context-aware: we assign higher weights to those historical pairs that are topically related to the current query when aggregating the personalized preferences. We match each response candidate with the personalized language style and personalized preference, respectively, and fuse the two matching signals to determine the final ranking score. Comprehensive experiments on two large datasets show that our method outperforms all baseline models.
Interactive recommendation that models the explicit interactions between users and the recommender system has attracted a lot of research attentions in recent years. Most previous interactive recommendation systems only focus on optimizing recommendation accuracy while overlooking other important aspects of recommendation quality, such as the diversity of recommendation results. In this paper, we propose a novel recommendation model, named \underline{D}iversity-promoting \underline{D}eep \underline{R}einforcement \underline{L}earning (D$^2$RL), which encourages the diversity of recommendation results in interaction recommendations. More specifically, we adopt a Determinantal Point Process (DPP) model to generate diverse, while relevant item recommendations. A personalized DPP kernel matrix is maintained for each user, which is constructed from two parts: a fixed similarity matrix capturing item-item similarity, and the relevance of items dynamically learnt through an actor-critic reinforcement learning framework. We performed extensive offline experiments as well as simulated online experiments with real world datasets to demonstrate the effectiveness of the proposed model.
We present an end-to-end framework for solving the Vehicle Routing Problem (VRP) using reinforcement learning. In this approach, we train a single model that finds near-optimal solutions for problem instances sampled from a given distribution, only by observing the reward signals and following feasibility rules. Our model represents a parameterized stochastic policy, and by applying a policy gradient algorithm to optimize its parameters, the trained model produces the solution as a sequence of consecutive actions in real time, without the need to re-train for every new problem instance. On capacitated VRP, our approach outperforms classical heuristics and Google's OR-Tools on medium-sized instances in solution quality with comparable computation time (after training). We demonstrate how our approach can handle problems with split delivery and explore the effect of such deliveries on the solution quality. Our proposed framework can be applied to other variants of the VRP such as the stochastic VRP, and has the potential to be applied more generally to combinatorial optimization problems.
While most machine translation systems to date are trained on large parallel corpora, humans learn language in a different way: by being grounded in an environment and interacting with other humans. In this work, we propose a communication game where two agents, native speakers of their own respective languages, jointly learn to solve a visual referential task. We find that the ability to understand and translate a foreign language emerges as a means to achieve shared goals. The emergent translation is interactive and multimodal, and crucially does not require parallel corpora, but only monolingual, independent text and corresponding images. Our proposed translation model achieves this by grounding the source and target languages into a shared visual modality, and outperforms several baselines on both word-level and sentence-level translation tasks. Furthermore, we show that agents in a multilingual community learn to translate better and faster than in a bilingual communication setting.
We introduce Interactive Question Answering (IQA), the task of answering questions that require an autonomous agent to interact with a dynamic visual environment. IQA presents the agent with a scene and a question, like: "Are there any apples in the fridge?" The agent must navigate around the scene, acquire visual understanding of scene elements, interact with objects (e.g. open refrigerators) and plan for a series of actions conditioned on the question. Popular reinforcement learning approaches with a single controller perform poorly on IQA owing to the large and diverse state space. We propose the Hierarchical Interactive Memory Network (HIMN), consisting of a factorized set of controllers, allowing the system to operate at multiple levels of temporal abstraction. To evaluate HIMN, we introduce IQUAD V1, a new dataset built upon AI2-THOR, a simulated photo-realistic environment of configurable indoor scenes with interactive objects. IQUAD V1 has 75,000 questions, each paired with a unique scene configuration. Our experiments show that our proposed model outperforms popular single controller based methods on IQUAD V1. For sample questions and results, please view our video: //youtu.be/pXd3C-1jr98.
We propose AffordanceNet, a new deep learning approach to simultaneously detect multiple objects and their affordances from RGB images. Our AffordanceNet has two branches: an object detection branch to localize and classify the object, and an affordance detection branch to assign each pixel in the object to its most probable affordance label. The proposed framework employs three key components for effectively handling the multiclass problem in the affordance mask: a sequence of deconvolutional layers, a robust resizing strategy, and a multi-task loss function. The experimental results on the public datasets show that our AffordanceNet outperforms recent state-of-the-art methods by a fair margin, while its end-to-end architecture allows the inference at the speed of 150ms per image. This makes our AffordanceNet well suitable for real-time robotic applications. Furthermore, we demonstrate the effectiveness of AffordanceNet in different testing environments and in real robotic applications. The source code is available at //github.com/nqanh/affordance-net