As black box explanations are increasingly being employed to establish model credibility in high-stakes settings, it is important to ensure that these explanations are accurate and reliable. However, prior work demonstrates that explanations generated by state-of-the-art techniques are inconsistent, unstable, and provide very little insight into their correctness and reliability. In addition, these methods are also computationally inefficient, and require significant hyper-parameter tuning. In this paper, we address the aforementioned challenges by developing a novel Bayesian framework for generating local explanations along with their associated uncertainty. We instantiate this framework to obtain Bayesian versions of LIME and KernelSHAP which output credible intervals for the feature importances, capturing the associated uncertainty. The resulting explanations not only enable us to make concrete inferences about their quality (e.g., there is a 95% chance that the feature importance lies within the given range), but are also highly consistent and stable. We carry out a detailed theoretical analysis that leverages the aforementioned uncertainty to estimate how many perturbations to sample, and how to sample for faster convergence. This work makes the first attempt at addressing several critical issues with popular explanation methods in one shot, thereby generating consistent, stable, and reliable explanations with guarantees in a computationally efficient manner. Experimental evaluation with multiple real world datasets and user studies demonstrate that the efficacy of the proposed framework.
In indoor positioning, signal fluctuation is highly location-dependent. However, signal uncertainty is one critical yet commonly overlooked dimension of the radio signal to be fingerprinted. This paper reviews the commonly used Gaussian Processes (GP) for probabilistic positioning and points out the pitfall of using GP to model signal fingerprint uncertainty. This paper also proposes Deep Gaussian Processes (DGP) as a more informative alternative to address the issue. How DGP better measures uncertainty in signal fingerprinting is evaluated via simulated and realistically collected datasets.
Fairness aware data mining (FADM) aims to prevent algorithms from discriminating against protected groups. The literature has come to an impasse as to what constitutes explainable variability as opposed to discrimination. This distinction hinges on a rigorous understanding of the role of proxy variables; i.e., those variables which are associated both the protected feature and the outcome of interest. We demonstrate that fairness is achieved by ensuring impartiality with respect to sensitive characteristics and provide a framework for impartiality by accounting for different perspectives on the data generating process. In particular, fairness can only be precisely defined in a full-data scenario in which all covariates are observed. We then analyze how these models may be conservatively estimated via regression in partial-data settings. Decomposing the regression estimates provides insights into previously unexplored distinctions between explainable variability and discrimination that illuminate the use of proxy variables in fairness aware data mining.
Machine learning (ML) has often been applied to space weather (SW) problems in recent years. SW originates from solar perturbations and is comprised of the resulting complex variations they cause within the systems between the Sun and Earth. These systems are tightly coupled and not well understood. This creates a need for skillful models with knowledge about the confidence of their predictions. One example of such a dynamical system is the thermosphere, the neutral region of Earth's upper atmosphere. Our inability to forecast it has severe repercussions in the context of satellite drag and collision avoidance operations for objects in low Earth orbit. Even with (assumed) perfect driver forecasts, our incomplete knowledge of the system results in often inaccurate neutral mass density predictions. Continuing efforts are being made to improve model accuracy, but density models rarely provide estimates of uncertainty. In this work, we propose two techniques to develop nonlinear ML models to predict thermospheric density while providing calibrated uncertainty estimates: Monte Carlo (MC) dropout and direct prediction of the probability distribution, both using the negative logarithm of predictive density (NLPD) loss function. We show the performance for models trained on local and global datasets. This shows that NLPD provides similar results for both techniques but the direct probability method has a much lower computational cost. For the global model regressed on the SET HASDM density database, we achieve errors of 11% on independent test data with well-calibrated uncertainty estimates. Using an in-situ CHAMP density dataset, both techniques provide test error on the order of 13%. The CHAMP models (on independent data) are within 2% of perfect calibration for all prediction intervals tested. This model can also be used to obtain global predictions with uncertainties at a given epoch.
The paper presents an approach for building consistent and applicable clinical decision support systems (CDSSs) using a data-driven predictive model aimed at resolving the problem of low applicability and scalability of CDSSs in real-world applications. The approach is based on a threestage application of domain-specific and data-driven supportive procedures that are to be integrated into clinical business processes with higher trust and explainability of the prediction results and recommendations. Within the considered three stages, the regulatory policy, data-driven modes, and interpretation procedures are integrated to enable natural domain-specific interaction with decisionmakers with sequential narrowing of the intelligent decision support focus. The proposed methodology enables a higher level of automation, scalability, and semantic interpretability of CDSSs. The approach was implemented in software solutions and tested within a case study in T2DM prediction, enabling us to improve known clinical scales (such as FINDRISK) while keeping the problem-specific reasoning interface similar to existing applications. Such inheritance, together with the three-staged approach, provide higher compatibility of the solution and leads to trust, valid, and explainable application of data-driven solutions in real-world cases.
Deep neural networks have significantly contributed to the success in predictive accuracy for classification tasks. However, they tend to make over-confident predictions in real-world settings, where domain shifting and out-of-distribution (OOD) examples exist. Most research on uncertainty estimation focuses on computer vision because it provides visual validation on uncertainty quality. However, few have been presented in the natural language process domain. Unlike Bayesian methods that indirectly infer uncertainty through weight uncertainties, current evidential uncertainty-based methods explicitly model the uncertainty of class probabilities through subjective opinions. They further consider inherent uncertainty in data with different root causes, vacuity (i.e., uncertainty due to a lack of evidence) and dissonance (i.e., uncertainty due to conflicting evidence). In our paper, we firstly apply evidential uncertainty in OOD detection for text classification tasks. We propose an inexpensive framework that adopts both auxiliary outliers and pseudo off-manifold samples to train the model with prior knowledge of a certain class, which has high vacuity for OOD samples. Extensive empirical experiments demonstrate that our model based on evidential uncertainty outperforms other counterparts for detecting OOD examples. Our approach can be easily deployed to traditional recurrent neural networks and fine-tuned pre-trained transformers.
Due to their increasing spread, confidence in neural network predictions became more and more important. However, basic neural networks do not deliver certainty estimates or suffer from over or under confidence. Many researchers have been working on understanding and quantifying uncertainty in a neural network's prediction. As a result, different types and sources of uncertainty have been identified and a variety of approaches to measure and quantify uncertainty in neural networks have been proposed. This work gives a comprehensive overview of uncertainty estimation in neural networks, reviews recent advances in the field, highlights current challenges, and identifies potential research opportunities. It is intended to give anyone interested in uncertainty estimation in neural networks a broad overview and introduction, without presupposing prior knowledge in this field. A comprehensive introduction to the most crucial sources of uncertainty is given and their separation into reducible model uncertainty and not reducible data uncertainty is presented. The modeling of these uncertainties based on deterministic neural networks, Bayesian neural networks, ensemble of neural networks, and test-time data augmentation approaches is introduced and different branches of these fields as well as the latest developments are discussed. For a practical application, we discuss different measures of uncertainty, approaches for the calibration of neural networks and give an overview of existing baselines and implementations. Different examples from the wide spectrum of challenges in different fields give an idea of the needs and challenges regarding uncertainties in practical applications. Additionally, the practical limitations of current methods for mission- and safety-critical real world applications are discussed and an outlook on the next steps towards a broader usage of such methods is given.
As a field of AI, Machine Reasoning (MR) uses largely symbolic means to formalize and emulate abstract reasoning. Studies in early MR have notably started inquiries into Explainable AI (XAI) -- arguably one of the biggest concerns today for the AI community. Work on explainable MR as well as on MR approaches to explainability in other areas of AI has continued ever since. It is especially potent in modern MR branches, such as argumentation, constraint and logic programming, planning. We hereby aim to provide a selective overview of MR explainability techniques and studies in hopes that insights from this long track of research will complement well the current XAI landscape. This document reports our work in-progress on MR explainability.
The notion of uncertainty is of major importance in machine learning and constitutes a key element of machine learning methodology. In line with the statistical tradition, uncertainty has long been perceived as almost synonymous with standard probability and probabilistic predictions. Yet, due to the steadily increasing relevance of machine learning for practical applications and related issues such as safety requirements, new problems and challenges have recently been identified by machine learning scholars, and these problems may call for new methodological developments. In particular, this includes the importance of distinguishing between (at least) two different types of uncertainty, often refereed to as aleatoric and epistemic. In this paper, we provide an introduction to the topic of uncertainty in machine learning as well as an overview of hitherto attempts at handling uncertainty in general and formalizing this distinction in particular.
Graph Neural Networks (GNNs) are a powerful tool for machine learning on graphs.GNNs combine node feature information with the graph structure by recursively passing neural messages along edges of the input graph. However, incorporating both graph structure and feature information leads to complex models, and explaining predictions made by GNNs remains unsolved. Here we propose GNNExplainer, the first general, model-agnostic approach for providing interpretable explanations for predictions of any GNN-based model on any graph-based machine learning task. Given an instance, GNNExplainer identifies a compact subgraph structure and a small subset of node features that have a crucial role in GNN's prediction. Further, GNNExplainer can generate consistent and concise explanations for an entire class of instances. We formulate GNNExplainer as an optimization task that maximizes the mutual information between a GNN's prediction and distribution of possible subgraph structures. Experiments on synthetic and real-world graphs show that our approach can identify important graph structures as well as node features, and outperforms baselines by 17.1% on average. GNNExplainer provides a variety of benefits, from the ability to visualize semantically relevant structures to interpretability, to giving insights into errors of faulty GNNs.
Embedding models for deterministic Knowledge Graphs (KG) have been extensively studied, with the purpose of capturing latent semantic relations between entities and incorporating the structured knowledge into machine learning. However, there are many KGs that model uncertain knowledge, which typically model the inherent uncertainty of relations facts with a confidence score, and embedding such uncertain knowledge represents an unresolved challenge. The capturing of uncertain knowledge will benefit many knowledge-driven applications such as question answering and semantic search by providing more natural characterization of the knowledge. In this paper, we propose a novel uncertain KG embedding model UKGE, which aims to preserve both structural and uncertainty information of relation facts in the embedding space. Unlike previous models that characterize relation facts with binary classification techniques, UKGE learns embeddings according to the confidence scores of uncertain relation facts. To further enhance the precision of UKGE, we also introduce probabilistic soft logic to infer confidence scores for unseen relation facts during training. We propose and evaluate two variants of UKGE based on different learning objectives. Experiments are conducted on three real-world uncertain KGs via three tasks, i.e. confidence prediction, relation fact ranking, and relation fact classification. UKGE shows effectiveness in capturing uncertain knowledge by achieving promising results on these tasks, and consistently outperforms baselines on these tasks.