亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper aims to construct an efficient and highly accurate numerical method to solve a class of parabolic integro-fractional differential equations, which is based on wavelets and $L2$-$1_\sigma$ scheme; specifically, the Haar wavelet decomposition is used for grid adaptation and efficient computations, while the high order $L2$-$1_\sigma$ scheme is taken into account to discretize the time-fractional operator. In particular, second-order discretizations are used to approximate the spatial derivatives to solve the one-dimensional problem. In contrast, a repeated quadrature rule based on trapezoidal approximation is employed to discretize the integral operator. On the other hand, we use the semi-discretization of the proposed two-dimensional model based on the $L2$-$1_\sigma$ scheme for the fractional operator and composite trapezoidal approximation for the integral part. Then, the spatial derivatives are approximated by using the two-dimensional Haar wavelet. Here, we investigated theoretically and verified numerically the behavior of the proposed higher-order numerical method. In particular, the stability and convergence analysis of the proposed higher-order method has been studied. The obtained results are compared with some existing techniques through several graphs and tables, and it is shown that the proposed higher-order methods have better accuracy and produce less error compared with the $L1$ scheme.

相關內容

We propose in this work a Monte Carlo method for three dimensional scalar radiative transfer equations with non-integrable, space-dependent scattering kernels. Such kernels typically account for long-range statistical features, and arise for instance in the context of wave propagation in turbulent atmosphere, geophysics, and medical imaging in the peaked-forward regime. In contrast to the classical case where the scattering cross section is integrable, which results in a non-zero mean free time, the latter here vanishes. This creates numerical difficulties as standard Monte Carlo methods based on a naive regularization exhibit large jump intensities and an increased computational cost. We propose a method inspired by the finance literature based on a small jumps - large jumps decomposition, allowing us to treat the small jumps efficiently and reduce the computational burden. We demonstrate the performance of the approach with numerical simulations and provide a complete error analysis. The multifractional terminology refers to the fact that the high frequency contribution of the scattering operator is a fractional Laplace-Beltrami operator on the unit sphere with space-dependent index.

In this work we propose tailored model order reduction for varying boundary optimal control problems governed by parametric partial differential equations. With varying boundary control, we mean that a specific parameter changes where the boundary control acts on the system. This peculiar formulation might benefit from model order reduction. Indeed, fast and reliable simulations of this model can be of utmost usefulness in many applied fields, such as geophysics and energy engineering. However, varying boundary control features very complicated and diversified parametric behaviour for the state and adjoint variables. The state solution, for example, changing the boundary control parameter, might feature transport phenomena. Moreover, the problem loses its affine structure. It is well known that classical model order reduction techniques fail in this setting, both in accuracy and in efficiency. Thus, we propose reduced approaches inspired by the ones used when dealing with wave-like phenomena. Indeed, we compare standard proper orthogonal decomposition with two tailored strategies: geometric recasting and local proper orthogonal decomposition. Geometric recasting solves the optimization system in a reference domain simplifying the problem at hand avoiding hyper-reduction, while local proper orthogonal decomposition builds local bases to increase the accuracy of the reduced solution in very general settings (where geometric recasting is unfeasible). We compare the various approaches on two different numerical experiments based on geometries of increasing complexity.

In this paper, we investigate the two-dimensional extension of a recently introduced set of shallow water models based on a regularized moment expansion of the incompressible Navier-Stokes equations \cite{kowalski2017moment,koellermeier2020analysis}. We show the rotational invariance of the proposed moment models with two different approaches. The first proof involves the split of the coefficient matrix into the conservative and non-conservative parts and prove the rotational invariance for each part, while the second one relies on the special block structure of the coefficient matrices. With the aid of rotational invariance, the analysis of the hyperbolicity for the moment model in 2D is reduced to the real diagonalizability of the coefficient matrix in 1D. Then we prove the real diagonalizability by deriving the analytical form of the characteristic polynomial. Furthermore, we extend the model to include a more general class of closure relations than the original model and establish that this set of general closure relations retain both rotational invariance and hyperbolicity.

In this paper, by introducing a reconstruction operator based on the Legendre moments, we construct a reduced discontinuous Galerkin (RDG) space that could achieve the same approximation accuracy but using fewer degrees of freedom (DoFs) than the standard discontinuous Galerkin (DG) space. The design of the ``narrow-stencil-based'' reconstruction operator can preserve the local data structure property of the high-order DG methods. With the RDG space, we apply the local discontinuous Galerkin (LDG) method with the implicit-explicit time marching for the nonlinear unsteady convection-diffusion-reaction equation, where the reduction of the number of DoFs allows us to achieve higher efficiency. In terms of theoretical analysis, we give the well-posedness and approximation properties for the reconstruction operator and the $L^2$ error estimate for the semi-discrete LDG scheme. Several representative numerical tests demonstrate the accuracy and the performance of the proposed method in capturing the layers.

The purpose of this research work is to employ the Optimal Auxiliary Function Method (OAFM) for obtaining numerical approximations of time-dependent nonlinear partial differential equations (PDEs) that arise in many disciplines of science and engineering. The initial and first approximations of parabolic nonlinear PDEs associated with initial conditions have been generated by utilizing this method. Then the Galerkin method is applied to estimate the coefficients that remain unknown. Finally, the values of the coefficients generated by the Galerkin method have been inserted into the first approximation. In each example, all numerical computations and corresponding absolute errors are provided in schematic and tabular representations. The rate of convergence attained by the proposed method is depicted in tabular form

This paper presents a personalized graph federated learning (PGFL) framework in which distributedly connected servers and their respective edge devices collaboratively learn device or cluster-specific models while maintaining the privacy of every individual device. The proposed approach exploits similarities among different models to provide a more relevant experience for each device, even in situations with diverse data distributions and disproportionate datasets. Furthermore, to ensure a secure and efficient approach to collaborative personalized learning, we study a variant of the PGFL implementation that utilizes differential privacy, specifically zero-concentrated differential privacy, where a noise sequence perturbs model exchanges. Our mathematical analysis shows that the proposed privacy-preserving PGFL algorithm converges to the optimal cluster-specific solution for each cluster in linear time. It also shows that exploiting similarities among clusters leads to an alternative output whose distance to the original solution is bounded, and that this bound can be adjusted by modifying the algorithm's hyperparameters. Further, our analysis shows that the algorithm ensures local differential privacy for all clients in terms of zero-concentrated differential privacy. Finally, the performance of the proposed PGFL algorithm is examined by performing numerical experiments in the context of regression and classification using synthetic data and the MNIST dataset.

We present a new approach to semiparametric inference using corrected posterior distributions. The method allows us to leverage the adaptivity, regularization and predictive power of nonparametric Bayesian procedures to estimate low-dimensional functionals of interest without being restricted by the holistic Bayesian formalism. Starting from a conventional nonparametric posterior, we target the functional of interest by transforming the entire distribution with a Bayesian bootstrap correction. We provide conditions for the resulting $\textit{one-step posterior}$ to possess calibrated frequentist properties and specialize the results for several canonical examples: the integrated squared density, the mean of a missing-at-random outcome, and the average causal treatment effect on the treated. The procedure is computationally attractive, requiring only a simple, efficient post-processing step that can be attached onto any arbitrary posterior sampling algorithm. Using the ACIC 2016 causal data analysis competition, we illustrate that our approach can outperform the existing state-of-the-art through the propagation of Bayesian uncertainty.

In a recent article the authors showed that the radiative Transfer equations with multiple frequencies and scattering can be formulated as a nonlinear integral system. In the present article, the formulation is extended to handle reflective boundary conditions. The fixed point method to solve the system is shown to be monotone. The discretization is done with a $P^1$ Finite Element Method. The convolution integrals are precomputed at every vertices of the mesh and stored in compressed hierarchical matrices, using Partially Pivoted Adaptive Cross-Approximation. Then the fixed point iterations involve only matrix vector products. The method is $O(N\sqrt[3]{N}\ln N)$, with respect to the number of vertices, when everything is smooth. A numerical implementation is proposed and tested on two examples. As there are some analogies with ray tracing the programming is complex.

This paper formulates, analyzes, and demonstrates numerically a method for the partitioned solution of coupled interface problems involving combinations of projection-based reduced order models (ROM) and/or full order methods (FOMs). The method builds on the partitioned scheme developed in [1], which starts from a well-posed formulation of the coupled interface problem and uses its dual Schur complement to obtain an approximation of the interface flux. Explicit time integration of this problem decouples its subdomain equations and enables their independent solution on each subdomain. Extension of this partitioned scheme to coupled ROM-ROM or ROM-FOM problems required formulations with non-singular Schur complements. To obtain these problems, we project a well-posed coupled FOM-FOM problem onto a composite reduced basis comprising separate sets of basis vectors for the interface and interior variables, and use the interface reduced basis as a Lagrange multiplier. Our analysis confirms that the resulting coupled ROM-ROM and ROM-FOM problems have provably non-singular Schur complements, independent of the mesh size and the reduced basis size. In the ROM-FOM case, analysis shows that one can also use the interface FOM space as a Lagrange multiplier. We illustrate the theoretical and computational properties of the partitioned scheme through reproductive and predictive tests for a model advection-diffusion transmission problem.

The conjoining of dynamical systems and deep learning has become a topic of great interest. In particular, neural differential equations (NDEs) demonstrate that neural networks and differential equation are two sides of the same coin. Traditional parameterised differential equations are a special case. Many popular neural network architectures, such as residual networks and recurrent networks, are discretisations. NDEs are suitable for tackling generative problems, dynamical systems, and time series (particularly in physics, finance, ...) and are thus of interest to both modern machine learning and traditional mathematical modelling. NDEs offer high-capacity function approximation, strong priors on model space, the ability to handle irregular data, memory efficiency, and a wealth of available theory on both sides. This doctoral thesis provides an in-depth survey of the field. Topics include: neural ordinary differential equations (e.g. for hybrid neural/mechanistic modelling of physical systems); neural controlled differential equations (e.g. for learning functions of irregular time series); and neural stochastic differential equations (e.g. to produce generative models capable of representing complex stochastic dynamics, or sampling from complex high-dimensional distributions). Further topics include: numerical methods for NDEs (e.g. reversible differential equations solvers, backpropagation through differential equations, Brownian reconstruction); symbolic regression for dynamical systems (e.g. via regularised evolution); and deep implicit models (e.g. deep equilibrium models, differentiable optimisation). We anticipate this thesis will be of interest to anyone interested in the marriage of deep learning with dynamical systems, and hope it will provide a useful reference for the current state of the art.

北京阿比特科技有限公司