亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Machine Learning-based heuristics have recently shown impressive performance in solving a variety of hard combinatorial optimization problems (COPs). However they generally rely on a separate neural model, specialized and trained for each single problem. Any variation of a problem requires adjustment of its model and re-training from scratch. In this paper, we propose GOAL (for Generalist combinatorial Optimization Agent Learning), a generalist model capable of efficiently solving multiple COPs and which can be fine-tuned to solve new COPs. GOAL consists of a single backbone plus light-weight problem-specific adapters, mostly for input and output processing. The backbone is based on a new form of mixed-attention blocks which allows to handle problems defined on graphs with arbitrary combinations of node, edge and instance-level features. Additionally, problems which involve heterogeneous nodes or edges, such as in multi-partite graphs, are handled through a novel multi-type transformer architecture, where the attention blocks are duplicated to attend only the relevant combination of types while relying on the same shared parameters. We train GOAL on a set of routing, scheduling and classic graph problems and show that it is only slightly inferior to the specialized baselines while being the first multi-task model that solves a variety of COPs. Finally, we showcase the strong transfer learning capacity of GOAL by fine-tuning or learning the adapters for new problems, with only few shots and little data.

相關內容

Payment Channel Networks (PCNs) have been proposed as an alternative solution to the scalability, throughput, and cost overhead associated with on-chain transactions. By facilitating offchain execution of transactions, PCNs significantly reduce the burden on the blockchain, leading to faster transaction processing, reduced transaction fees, and enhanced privacy. Despite these advantages, the current research in PCNs presents a variety of research challenges that require further exploration. In this paper, we survey the recent work in several aspects of PCNs, such as pathfinding and routing, virtual channels, state channels, payment channel hubs and rebalancing. This survey aims to provide the reader with a detailed understanding of the current state-of-the-art in PCN research, highlighting a few important advancements. Additionally, we highlight the various unresolved issues in the area of PCN research. Specifically, this paper seeks to answer the following crucial question: What are the various interesting and non-trivial challenges in PCN research that require immediate attention from the academic and research community? By addressing this question, we aim to identify the most pressing problems and future research directions that interested readers can immediately work on. Through this analysis, we hope to inspire researchers and practitioners to tackle these challenges to make PCNs more secure and versatile

The growing enrollments in computer science courses and increase in class sizes necessitate scalable, automated tutoring solutions to adequately support student learning. While Large Language Models (LLMs) like GPT-4 have demonstrated potential in assisting students through question-answering, educators express concerns over student overreliance, miscomprehension of generated code, and the risk of inaccurate answers. Rather than banning these tools outright, we advocate for a constructive approach that harnesses the capabilities of AI while mitigating potential risks. This poster introduces CourseAssist, a novel LLM-based tutoring system tailored for computer science education. Unlike generic LLM systems, CourseAssist uses retrieval-augmented generation, user intent classification, and question decomposition to align AI responses with specific course materials and learning objectives, thereby ensuring pedagogical appropriateness of LLMs in educational settings. We evaluated CourseAssist against a baseline of GPT-4 using a dataset of 50 question-answer pairs from a programming languages course, focusing on the criteria of usefulness, accuracy, and pedagogical appropriateness. Evaluation results show that CourseAssist significantly outperforms the baseline, demonstrating its potential to serve as an effective learning assistant. We have also deployed CourseAssist in 6 computer science courses at a large public R1 research university reaching over 500 students. Interviews with 20 student users show that CourseAssist improves computer science instruction by increasing the accessibility of course-specific tutoring help and shortening the feedback loop on their programming assignments. Future work will include extensive pilot testing at more universities and exploring better collaborative relationships between students, educators, and AI that improve computer science learning experiences.

Learning models whose predictions are invariant under multiple environments is a promising approach for out-of-distribution generalization. Such models are trained to extract features $X_{\text{inv}}$ where the conditional distribution $Y \mid X_{\text{inv}}$ of the label given the extracted features does not change across environments. Invariant models are also supposed to generalize to shifts in the marginal distribution $p(X_{\text{inv}})$ of the extracted features $X_{\text{inv}}$, a type of shift we call an $\textit{invariant covariate shift}$. However, we show that proposed methods for learning invariant models underperform under invariant covariate shift, either failing to learn invariant models$\unicode{x2014}$even for data generated from simple and well-studied linear-Gaussian models$\unicode{x2014}$or having poor finite-sample performance. To alleviate these problems, we propose $\textit{weighted risk invariance}$ (WRI). Our framework is based on imposing invariance of the loss across environments subject to appropriate reweightings of the training examples. We show that WRI provably learns invariant models, i.e. discards spurious correlations, in linear-Gaussian settings. We propose a practical algorithm to implement WRI by learning the density $p(X_{\text{inv}})$ and the model parameters simultaneously, and we demonstrate empirically that WRI outperforms previous invariant learning methods under invariant covariate shift.

The ability to compare objects, scenes, or situations is crucial for effective decision-making and problem-solving in everyday life. For instance, comparing the freshness of apples enables better choices during grocery shopping, while comparing sofa designs helps optimize the aesthetics of our living space. Despite its significance, the comparative capability is largely unexplored in artificial general intelligence (AGI). In this paper, we introduce CompBench, a benchmark designed to evaluate the comparative reasoning capability of multimodal large language models (MLLMs). CompBench mines and pairs images through visually oriented questions covering eight dimensions of relative comparison: visual attribute, existence, state, emotion, temporality, spatiality, quantity, and quality. We curate a collection of around 40K image pairs using metadata from diverse vision datasets and CLIP similarity scores. These image pairs span a broad array of visual domains, including animals, fashion, sports, and both outdoor and indoor scenes. The questions are carefully crafted to discern relative characteristics between two images and are labeled by human annotators for accuracy and relevance. We use CompBench to evaluate recent MLLMs, including GPT-4V(ision), Gemini-Pro, and LLaVA-1.6. Our results reveal notable shortcomings in their comparative abilities. We believe CompBench not only sheds light on these limitations but also establishes a solid foundation for future enhancements in the comparative capability of MLLMs.

Generative artificial intelligence has transformed the generation of synthetic data, providing innovative solutions to challenges like data scarcity and privacy, which are particularly critical in fields such as medicine. However, the effective use of this synthetic data to train high-performance models remains a significant challenge. This paper addresses this issue by introducing Knowledge Recycling (KR), a pipeline designed to optimise the generation and use of synthetic data for training downstream classifiers. At the heart of this pipeline is Generative Knowledge Distillation (GKD), the proposed technique that significantly improves the quality and usefulness of the information provided to classifiers through a synthetic dataset regeneration and soft labelling mechanism. The KR pipeline has been tested on a variety of datasets, with a focus on six highly heterogeneous medical image datasets, ranging from retinal images to organ scans. The results show a significant reduction in the performance gap between models trained on real and synthetic data, with models based on synthetic data outperforming those trained on real data in some cases. Furthermore, the resulting models show almost complete immunity to Membership Inference Attacks, manifesting privacy properties missing in models trained with conventional techniques.

Vision Transformer (ViT) has achieved excellent performance and demonstrated its promising potential in various computer vision tasks. The wide deployment of ViT in real-world tasks requires a thorough understanding of the societal impact of the model. However, most ViT-based works do not take fairness into account and it is unclear whether directly applying CNN-oriented debiased algorithm to ViT is feasible. Moreover, previous works typically sacrifice accuracy for fairness. Therefore, we aim to develop an algorithm that improves accuracy without sacrificing fairness. In this paper, we propose FairViT, a novel accurate and fair ViT framework. To this end, we introduce a novel distance loss and deploy adaptive fairness-aware masks on attention layers updating with model parameters. Experimental results show \sys can achieve accuracy better than other alternatives, even with competitive computational efficiency. Furthermore, \sys achieves appreciable fairness results.

Within recent times, cybercriminals have curated a variety of organised and resolute cyber attacks within a range of cyber systems, leading to consequential ramifications to private and governmental institutions. Current security-based automation and orchestrations focus on automating fixed purpose and hard-coded solutions, which are easily surpassed by modern-day cyber attacks. Research within Automated Cyber Defence will allow the development and enabling intelligence response by autonomously defending networked systems through sequential decision-making agents. This article comprehensively elaborates the developments within Automated Cyber Defence through a requirement analysis divided into two sub-areas, namely, automated defence and attack agents and Autonomous Cyber Operation (ACO) Gyms. The requirement analysis allows the comparison of automated agents and highlights the importance of ACO Gyms for their continual development. The requirement analysis is also used to critique ACO Gyms with an overall aim to develop them for deploying automated agents within real-world networked systems. Relevant future challenges were addressed from the overall analysis to accelerate development within the area of Automated Cyber Defence.

Learning disentanglement aims at finding a low dimensional representation which consists of multiple explanatory and generative factors of the observational data. The framework of variational autoencoder (VAE) is commonly used to disentangle independent factors from observations. However, in real scenarios, factors with semantics are not necessarily independent. Instead, there might be an underlying causal structure which renders these factors dependent. We thus propose a new VAE based framework named CausalVAE, which includes a Causal Layer to transform independent exogenous factors into causal endogenous ones that correspond to causally related concepts in data. We further analyze the model identifiabitily, showing that the proposed model learned from observations recovers the true one up to a certain degree. Experiments are conducted on various datasets, including synthetic and real word benchmark CelebA. Results show that the causal representations learned by CausalVAE are semantically interpretable, and their causal relationship as a Directed Acyclic Graph (DAG) is identified with good accuracy. Furthermore, we demonstrate that the proposed CausalVAE model is able to generate counterfactual data through "do-operation" to the causal factors.

The difficulty of deploying various deep learning (DL) models on diverse DL hardwares has boosted the research and development of DL compilers in the community. Several DL compilers have been proposed from both industry and academia such as Tensorflow XLA and TVM. Similarly, the DL compilers take the DL models described in different DL frameworks as input, and then generate optimized codes for diverse DL hardwares as output. However, none of the existing survey has analyzed the unique design of the DL compilers comprehensively. In this paper, we perform a comprehensive survey of existing DL compilers by dissecting the commonly adopted design in details, with emphasis on the DL oriented multi-level IRs, and frontend/backend optimizations. Specifically, we provide a comprehensive comparison among existing DL compilers from various aspects. In addition, we present detailed analysis of the multi-level IR design and compiler optimization techniques. Finally, several insights are highlighted as the potential research directions of DL compiler. This is the first survey paper focusing on the unique design of DL compiler, which we hope can pave the road for future research towards the DL compiler.

The design of deep graph models still remains to be investigated and the crucial part is how to explore and exploit the knowledge from different hops of neighbors in an efficient way. In this paper, we propose a novel RNN-like deep graph neural network architecture by incorporating AdaBoost into the computation of network; and the proposed graph convolutional network called AdaGCN~(AdaBoosting Graph Convolutional Network) has the ability to efficiently extract knowledge from high-order neighbors and integrate knowledge from different hops of neighbors into the network in an AdaBoost way. We also present the architectural difference between AdaGCN and existing graph convolutional methods to show the benefits of our proposal. Finally, extensive experiments demonstrate the state-of-the-art prediction performance and the computational advantage of our approach AdaGCN.

北京阿比特科技有限公司